DOI QR코드

DOI QR Code

Synthesis and characterization of star-shaped imide compounds

  • Jeon, Eunju (School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yoon, Tae-Ho (School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2012.01.05
  • Accepted : 2012.01.30
  • Published : 2012.03.01

Abstract

Novel star-shaped imide compounds containing electron-donating triphenylamine and/or electron-withdrawing bis(trifluoromethyl)phenyl side groups were synthesized via a two-step process. First, 3,6-dibromo-benzene-1,2,4,5-tetracarboxylic acid (2B4BA) was reacted with 4-aminophenyl (diphenylamine) (ATPA) or 3,5-bis(trifluoromethyl)aniline (6FA) by imide reaction. Then, Suzuki coupling reaction was carried out on these compounds with 4-(N,N-diphenylamino)-1-phenyl boronic acid (BTPA) or 3,5-bis(trifluoromethyl)phenyl boronic acid (6FBB), resulting in 3,6-bis[4-(diphenylamino)phenyl]-N,N'-bis[4-(diphenylamino) phenyl]-pyromellitimide (TPTPPI), 3,6-bis[3,5-bis(trifluoro methyl) phenyl]-N,N'-bis[3,5-bis(trifluoromethyl) phenyl]-pyro mellitimide (6F6FPI) or 3,6-bis[4-(diphenylamino)phenyl]-N,N'-bis[3,5-bistrifluoromethyl)phenyl]-pyromellitimide (6FTPPI). The imide compounds obtained were characterized by NMR, FT-IR, DSC, TGA, melting point analyzer, EA, and solubility measurements. In addition, their optical and electrical properties were evaluated by fluorescence spectroscopy, UV-vis spectroscopy, and cyclic voltammetry (CV). 6F6FPI exhibited deep blue emission (443 nm), along with high $T_m$ ($382^{\circ}C$) and relatively high $T_g$ ($148^{\circ}C$).

Keywords

References

  1. Kim, D. Y. Cho, H. N. Kim, C. Y. Porg. Polym. Sci. 2000, 25, 1089-1139. https://doi.org/10.1016/S0079-6700(00)00034-4
  2. Kufazvinei, C. Ruether, M, Wang, J Blau, W.Org. Electron. 2009, 10, 674-680 https://doi.org/10.1016/j.orgel.2009.02.015
  3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K. Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 47, 539-541.
  4. Leclerc, M. J. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2867-2873. https://doi.org/10.1002/pola.1266
  5. Sims, M. Bradley, D. D. C. Ariu, M.; Koeberg, M.; Asimakis, A.; Grell, M. Adv. Funct. Mater. 2004, 14, 765?781. https://doi.org/10.1002/adfm.200305149
  6. Xu, S.; Jin, Y.; Yang, M.; Bai, F.; Cao, S. Polym. Adv. Tech. 2006, 17, 556-561. https://doi.org/10.1002/pat.753
  7. Hasegawa, M.; Horie, K. Prog. Polym. Sci. 200, 26, 259-335. https://doi.org/10.1016/S0079-6700(00)00042-3
  8. Wang, Y.; Zhang, X.; Han, B.; Peng, J.; Hou, S.; Huang, Y.; Sun, H.; Xie, M.; Lu, Z. Dyes and Pigments 2010, 86, 190-196. https://doi.org/10.1016/j.dyepig.2010.01.003
  9. Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307-316. https://doi.org/10.1021/ma048774d
  10. Hsu, S. C.; Whang, W. T.; Chao, C. S. Thin Solid Films 2007, 515, 6943-6948. https://doi.org/10.1016/j.tsf.2007.02.015
  11. Kwon, T. W.; Kulkarni, A. P.; Jenehhe, S. A. Synthetic Metals, 2008, 158, 292-298. https://doi.org/10.1016/j.synthmet.2008.01.017
  12. Kwak, G.; Wang, H. Q.; Choi, K. H.; Song, K. H,; Kim, S. H.; Kim, H. S.; Lee, S. J.; Cho, H. Y.; Yu, E. J.; Lee, H. J.; Park, E. J.; Park, L. S. Macromol. Rapid. Commun. 2007, 28, 1317-1324. https://doi.org/10.1002/marc.200700208
  13. Kvarnstrom, C.; Petr, A.; Damlin, P.; Lindfors, T.; Ivaska, A.; Dunsch, L. J. Solid State Electrochem. 2002, 6, 505-512. https://doi.org/10.1007/s10008-002-0275-6
  14. Chiu, K. Y. Su, T. X.; Li, J. H.; Lin, T. H.; Liou, G. S.; Cheng, S. H. J.Electroanalytical Chem. 2005, 575, 95-101. https://doi.org/10.1016/j.jelechem.2004.09.005
  15. Sensfuss, S. Al-Ibrahim, M. In Organic Photovoltaics: Mechanism, Materials and Devices Sun, S. S. Sariciftci, N.S. Eds. CRC Press, Boca Raton, FL, 2005, pp 534.