• Title/Summary/Keyword: Methodology of Design

Search Result 8,850, Processing Time 0.035 seconds

Bond Graph/Genetic Programming Based Automated Design Methodology for Multi-Energy Domain Dynamic Systems (멀티-에너지 도메인 동적 시스템을 위한 본드 그래프/유전프로그래밍 기반의 자동설계 방법론)

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.677-682
    • /
    • 2006
  • Multi-domain design is difficult because such systems tend to be complex and include a mixtures of electrical, mechanical, hydraulic, and thermal components. To design an optimal system, unified and automated procedure with efficient search technique is required. This paper introduces design method for multi-domain system to obtain design solutions automatically, combining bond graph which is domain independent modeling tool and genetic programming which is well recognized as a powerful tool for open-ended search. The suggested design methodology has been applied for design of electric fitter, electric printer drive, and and pump system as a proof of concept for this approach.

Application Software Modeling and Integration Methodology using AUTOSAR-ready Light Software Architecture (AUTOSAR 대응 경량화 소프트웨어 아키텍처를 이용한 어플리케이션 소프트웨어 모델링 및 통합 방법)

  • Park, In-Seok;Lee, Woo-Taik;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.117-125
    • /
    • 2012
  • This paper describes a model-based software development methodology for AUTOSAR-ready light software architecture(AUTOSAR-Lite). The proposed methodology briefly represents an application software modeling technique using Matlab/Simulink. Using the proposed technique, application software architecture elements (e.g. software components, runnables, and interfaces) and functional behaviors can be designed in a single modeling environment. From the designed model, the codes of application software is automatically generated using Real-Time Workshop Embedded Coder. The generated application software is easily integrated with hand-coded basic software using the proposed method. In order to evaluate the proposed methodology, a diesel engine management system for a passenger car was employed as a case study. Based on the methodology, 8 atomic software components and 52 runnables are successfully developed, and they are evaluated by engine experiments. From this case study, AUTOSAR compatible model-based application software was successfully developed, and the effectiveness of the proposed methodology was evaluated.

Optimization of Concentrated Acid Hydrolysis of Waste Paper Using Response Surface Methodology

  • Jung, Ji Young;Choi, Myung Suk;Yang, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • Waste paper stands for the major biodegradable organic fraction of most of municipal solid waste. The potential of waste paper for glucose production was investigated in this current work. The pretreatment was accomplished by first subjecting waste paper to disintegration time (30 s), followed by ink removal of disintegrated waste paper using an deinking agent. Concentrated acid hydrolysis of waste paper with sulfuric acid was optimized to maximize glucose conversion. The concentrated acid hydrolysis conditions for waste paper (disintegrated time: 30 s, deinking agent loading : 15 ml) were optimized by using central composite design and response surface methodology. The optimization process employed a central composite design, where the investigated variables were acid concentration (60~80%), loading sulfuric acid (1~5 ml) and reaction time (1~5 h). All the tested variables were identified to have significant effects (p < 0.05) on glucose conversion. The optimum concentrated acid hydrolysis conditions were acid concentration of 70.8%, loading sulfuric acid of 3.2 ml and a reaction time of 3.6 h. This research of concentrated acid hydrolysis was a promising method to improve glucose conversion for waste paper.

Design methodology in transverse webs of the torsional box structure in an ultra large container ship

  • Silva-Campillo, Arturo;Suarez-Bermejo, J.C.;Herreros-Sierra, M.A.;de Vicente, M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.772-785
    • /
    • 2021
  • Container ships has a transverse section in the form of an open profile, making it very sensitive to torsion phenomena. To minimize this effect, a structure known as a torsion box exists, which is subject to high stresses influenced by the fatigue phenomenon and the existence of cut-outs, for the passage of the longitudinal stiffeners, acting as stress concentrators. The aim of this study is to propose a two-stage design methodology to aid designers in satisfying the structural requirements and contribute with to a better understanding of the considered structure. The transverse webs of a torsional box structure are examined by comparing different cut-out geometries from numerical models with different regular load conditions to obtain the variables of the fatigue safety factor through linear regression models. The most appropriate geometry of the torsion box is established in terms of minimum weight, from nonlinear multivariable optimization models.

Design Methodology of Main Bearing Cap by a Finite Element Analysis (베어링 캡 유한 요소 해석 설계 방법)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.

Research on the Framework for the Adoption of Digital Manufacturing Methodology with Information Strategy Planning Concept (ISP(정보 전략 계획) 개념을 이용한 디지털 생산 적용 프레임워크 연구)

  • Woo, Jong-Hun;Song, Young-Joo;Lee, Tae-Kyung;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.94-105
    • /
    • 2010
  • Todays, there is fast transition about the new manufacturing IT methodologies from the conceptual phase into the practical application phase for the strengthening of enterprise competitiveness in manufacturing industry. One of those new methodologies is PLM (Product Life-cycle Management). PLM methodology consists of 3D CAD for the product design, PDM (Product Data Management) for the data management based on the collaboration platform and lastly DM (Digital Manufacturing). DM has evoluted from the stand-alone computer simulation of early 1980s, and now it covers the overall production development and production. Unfortunately, there exist serious critical problems about the actual application of DM for the real work. This is owing to the transition of the point of view from stand-alone type application (such as flow simulation or robot simulation) to that of business process about product development and production management. In this paper, we propose an application framework for the successful project with the digital manufacturing methodology with the concept of Information Strategy Planning, which enables the systematic diagnosis and the quantitative evaluation. Also, we introduce the actual practice of the proposing framework with the ISP project for 'Analysis & Simulation Technique of manufacturing process project' that is being conducted by Chungnam Techno Park.

Optimization of Medium Composition for Production of the Antioxidant Substances by Bacillus polyfermenticus SCD Using Response Surface Methodology

  • Lee, Jang-Hyun;Chae, Mi-Seung;Choi, Gooi-Hun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.959-964
    • /
    • 2009
  • Production of the antioxidant substances by Bacillus polyfermenticus SCD was investigated using shake-flask fermentation. The one-factor-at-a-time method was first employed to determine the key ingredients for optimal medium composition, then further investigation of the medium composition was performed using response surface methodology (RSM). The antioxidant activity was measured using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays. After screening various elements, fructose, tryptone, and $MgSO_4\;7H_2O$ were chosen as the main factors for study in the statistical experimental design. Central composite design (CCD) was then used to determine the optimal concentrations of these 3 components. Under the proposed optimized medium containing 2.8% fructose, 1.34% tryptone, 0.015% $MgSO_4\;7H_2O$), 0.5% NaCl, and 0.25% $K_2HPO_4$, the model predicted an antioxidant activity of 80.5% ($R^2=0.9421$. The actual experimental results were in agreement with the prediction.

The Study of Circuit Model Parameter Generation Using Device Simulation (소자 시뮬레이션을 이용한 Circuit Model Parameter 생성에 대한 연구)

  • 이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.177-182
    • /
    • 2003
  • In the case of the flash memory, various kinds of transistors and the wide range of operation voltage are necessary to achieve the read/write operations. Therefore, the characteristics of transistors are measured in the silicon for the circuit design, and the test vehicle run must be processed. In this study, an efficient design flow is suggested using TCAD tools. The test vehicle is replaced with well-calibrated TCAD simulation. First, the calibration methodology is introduced and tested for flash memory device. The calibration errors are less than 5% of a full chip operation, which is accepted by the designers. The results of the calibration were used to predict I-V curves and model parameter of the various transistors for the design of flash device.

  • PDF

CONSTRUCTION SCHEDULE DELAY RISK ASSESSMENT BY USING COMBINED AHP-RII METHODOLOGY FOR AN INTERNATIONAL NPP PROJECT

  • HOSSEN, MUHAMMED MUFAZZAL;KANG, SUNKOO;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.362-379
    • /
    • 2015
  • In this study, Nuclear Power Plant (NPP) construction schedule delay risk assessment methodology is developed and the construction delay risk is assessed for turnkey international NPP projects. Three levels of delay factors were selected through literature review and discussions with nuclear industry experts. A questionnaire survey was conducted on the basis of an analytic hierarchy process (AHP) and Relative Importance Index (RII) methods and the schedule delay risk is assessed qualitatively and quantitatively by severity and frequency of occurrence of delay factors. This study assigns four main delay factors to the first level: main contractor, utility, regulatory authority, and financial and country factor. The second and the third levels are designed with 12 sub-factors and 32 sub-sub-factors, respectively. This study finds the top five most important sub-sub-factors, which are as follows: policy changes, political instability and public intervention; uncompromising regulatory criteria and licensing documents conflicting with existing regulations; robust design document review procedures; redesign due to errors in design and design changes; and worldwide shortage of qualified and experienced nuclear specific equipment manufacturers. The proposed combined AHP-RII methodology is capable of assessing delay risk effectively and efficiently. Decision makers can apply risk informed decision making to avoid unexpected construction delays of NPPs.