Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2021.08.004

Design methodology in transverse webs of the torsional box structure in an ultra large container ship  

Silva-Campillo, Arturo (Department of Naval Architecture, Shipbuilding and Ocean Engineering, Universidad Politecnica de Madrid (UPM))
Suarez-Bermejo, J.C. (Department of Material Science, Structural Materials Research Centre (CIME), Universidad Politecnica de Madrid (UPM))
Herreros-Sierra, M.A. (Department of Naval Architecture, Shipbuilding and Ocean Engineering, Universidad Politecnica de Madrid (UPM))
de Vicente, M. (Department of Naval Architecture, Shipbuilding and Ocean Engineering, Universidad Politecnica de Madrid (UPM))
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.13, no.1, 2021 , pp. 772-785 More about this Journal
Abstract
Container ships has a transverse section in the form of an open profile, making it very sensitive to torsion phenomena. To minimize this effect, a structure known as a torsion box exists, which is subject to high stresses influenced by the fatigue phenomenon and the existence of cut-outs, for the passage of the longitudinal stiffeners, acting as stress concentrators. The aim of this study is to propose a two-stage design methodology to aid designers in satisfying the structural requirements and contribute with to a better understanding of the considered structure. The transverse webs of a torsional box structure are examined by comparing different cut-out geometries from numerical models with different regular load conditions to obtain the variables of the fatigue safety factor through linear regression models. The most appropriate geometry of the torsion box is established in terms of minimum weight, from nonlinear multivariable optimization models.
Keywords
Fatigue life; Ship structure; Container ship; Torsional box; Design methodology;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 JFE, 2021. Steel Corporation Catalog: Steel Sections for Shipbuilding. https://www.jfe-steel.co.jp/en/products/shapes/catalog/d1e-002.pdf.
2 Sun, H., Soares, C., 2003. An experimental study of ultimate torsional strength of a ship-type hull girder with a large deck opening. Mar. Struct. 16, 50-67. https://doi.org/10.1016/S0951-8339(02)00051-5.   DOI
3 Ameli, I., Behrouz, A., Lin, M., Agbo, S., Cheng, R., Duan, D., Adeeb, S., 2019. Estimation of the CTOD-crack growth curves in SENT specimens using the eXtended finite element method. Int. J. Pres. Ves. Pip. 169, 16-25. https://doi.org/10.1016/j.ijpvp.2018.11.008.   DOI
4 Barhoumi, M., Storhaug, G., 2014. Assessment of whipping and springing on a large container vessel. Int. J. Nav. Archit. Ocean Eng. 6, 442-458. https://doi.org/10.2478/IJNAOE-2013-0191.   DOI
5 Chen, X., Wu, Y., Cui, W., Jensen, J., 2006. Review of hydroelasticity theories for global response of marine structures. Ocean Eng. 33, 439-457. https://doi.org/10.1016/j.oceaneng.2004.04.010.   DOI
6 DNV, G.L., 2015. Det Norske Veritas rules for classification ships pt, p. 16, 3 ch.8.
7 Ferraz de Oliveira, S., 2015. Structural analysis of open deck ship hulls subjected to bending, shear and torsional loadings (Master Thesis).
8 French, M., 2008. Fundamentals of Optimization. Methods, Minimum Principles, and Applications for Making Things Better. Springer.
9 Soderberg, C., 1930. Factor of safety and working stress. Trans. Am. Soc. Mech. Eng. 1, 13-28.
10 Senjanovic, I., Vladimir, N., Tomic, M., 2011b. Investigation of torsion, warping and distortion of large container ships. Ocean Syst. Eng. 1, 73-93. https://doi.org/10.12989/ose.2011.1.1.073.   DOI
11 Vidhya, M.S., Christina, K.V.M., 2020. Fatigue life, fatigue damage, fatigue factor of safety, fatigue sensitivity, biaxiality indication and equivalent stress of a radial connecting rod. Int. Res. J. Eng. Technol. 7 (9), 1499-1502.
12 Vincent, I., Jensen, J., 2014. Measurements in a container ship of wave-induced hull girder stresses in excess of design values. Mar. Struct. 37, 54-85. https://doi.org/10.1016/j.marstruc.2014.02.006.   DOI
13 Shama, M., 2010. Torsion and Shear Stresses in Ships. Springer.
14 Fricke, W., Cui, W., Kierkegaard, H., Kihl, D., Koval, M., Mikkola, T., Parmentier, G., Toyosada, M., Yoon, J., 2002. Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Mar. Struct. 15, 1-13. https://doi.org/10.1016/S0951-8339(01)00016-8.   DOI
15 Fukasaka, T., Mukai, K., 2014. On the effects of hull-girder vibration upon fatigue strength of a post-panamax container ship disaggregated by short-term sea state. Int. J. Nav. Archit. Ocean Eng. 6, 431-441. https://doi.org/10.2478/IJNAOE2013-0190.   DOI
16 Neuberg, O., Drimer, N., 2017. Fatigue limit state design of fast boats. Mar. Struct. 55, 17-36. https://doi.org/10.1016/j.marstruc.2017.05.002.   DOI
17 Paik, J., Thayamballi, A., Pedersen, P., Park, Y., 2001. Ultimate strength of ship hulls under torsion. Ocean Eng. 28, 1097-1133. https://doi.org/10.1016/S0029-8018(01)00015-4.   DOI
18 Senjanovic, I., Vladimir, N., Hadzic, N., Tomic, M., 2011a. Beam structural modelling in hydroelastic analysis of ultra large container ships. In: Recent Advances in Vibration Analysis Ch, vol. 10. https://doi.org/10.5772/21616.
19 Senjanovic, I., Vladimir, N., Tomic, M., Hadzic, N., Malenica, S., 2014. Global hydroelastic analysis of ultra large container ships by improved beam structural model. Int. J. Nav. Archit. Ocean Eng. 6, 1041-1063. https://doi.org/10.2478/IJNAOE-2013-0230.   DOI
20 Tezdogan, T., Incesik, A., Turan, O., Kellett, P., 2016. Assessing the impact of a slow steaming approach on reducing the fuel consumption of a containership advancing in head seas. Transp. Res. Proc. 14, 1659-1668. https://doi.org/10.1016/j.trpro.2016.05.131.   DOI
21 Okada, T., Takedo, Y., Maeda, T., 2016. On board measurements of stresses and deflections of a post-panamax containership and its feedback to rational design. Mar. Struct. 19, 141-172. https://doi.org/10.1016/j.marstruc.2006.09.001.   DOI
22 Wasmi, H.R., Abdullah, M.Q., Jassim, O.A., 2006. Testing and estimation fatigue life of a flange connection used in power plant by ANSYS. Int. J. Curr. Eng. and Technol. 6 (4), 1302-1306.
23 Zhibin, Z., 2005. An efficient sequential quadratic programming algorithm for nonlinear programming. J. Comput. Appl. Math. 175, 447-464. https://doi.org/10.1016/j.cam.2004.07.001.   DOI
24 Zhu, Z., Ren, H., Li, C., Zhou, X., 2020. Ultimate limit state function and its fitting method of damaged ship under combined loads. J. Mar. Sci. Eng. 8, 117. https://doi.org/10.3390/jmse8020117.   DOI
25 Mao, W., Ringsberg, J., Rychlik, I., 2010. The effect of whipping/springing on fatigue damage and extreme response of ship structures. In: Proceedings of the ASME 29th International Conference on Ocean, Offshore and Artic Engineering (OMAE). https://doi.org/10.1115/OMAE2010-20124.   DOI
26 Moan, T., 2009. Development of accidental collapse limit state criteria for offshore structures. Struct. Saf. 31, 124-135. https://doi.org/10.1016/j.strusafe.2008.06.004.   DOI
27 Paik, J., Thayamballi, A., 2003. Ultimate Limit State Design of Steel-Plated Structures. John Wiley & Sons, Chichester, UK.
28 Patil, H., Jeyakarthikeyan, P.V., 2018. Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS. IOP Conf. Ser. Mater. Sci. Eng. 402, 012065. https://doi.org/10.1088/1757-899X/402/1/012065.   DOI
29 Gerber, W., 1874. Bestimmung der zulossigen spannungen in eisen constructionen. z. bayer. archit. ing, ver (6), 101.
30 Alfred, E., Benson, S., Hirdaris, S., Dow, R., 2016. Design safety margin of a 10,000 TEU container ship through ultimate hull girder load combination analysis. Mar. Struct. 46, 78-101. https://doi.org/10.1016/j.marstruc.2015.12.003.   DOI
31 Goodman, J., 1899. Mechanics Applied to Engineering. Longman-green.
32 Huang, W., Garbatov, Y., Guedes Soares, C., 2013. Fatigue reliability assessment of a complex welded structure subjected to multiple cracks. Eng. Struct. 56, 868-879. https://doi.org/10.1016/j.engstruct.2013.06.011.   DOI
33 Hyun, M., Min, S., Nam, Y., Geun, S., Eon, K., Rae, G., 2009. A comparative study for the fatigue assessment of a ship structure by use of hot spot stress and structural stress approaches. Ocean Eng. 36, 1067-1072. https://doi.org/10.1016/j.oceaneng.2009.07.001.   DOI
34 Wu, W., Lin, J., 2015. Productivity growth, scale economies, ship size economies and technical progress for the container shipping industry in Taiwan. Transport. Res. part e 73, 1-16. https://doi.org/10.1016/j.tre.2014.10.011.   DOI
35 Hyun, M., Won, S., Hwan, J., Seok, K., Kyoo, J., Ho, J., 2010. An experimental study on the fatigue strength assessment of longi-web connections in ship structures using structural stress. Int. J. Fatig. 32, 318-329. https://doi.org/10.1016/j.ijfatigue.2009.06.018.   DOI
36 Iijima, K., Shigemi, T., Miyake, R., Kumano, A., 2004. A practical method for torsional strength assessment of container ship structures. Mar. Struct. 17, 355-384. https://doi.org/10.1016/j.marstruc.2004.08.011.   DOI
37 Li, Z., Ringsberg, J., Storhaug, G., 2013. Time-domain fatigue assessment of ship sideshell structures. Int. J. Fatig. 55, 276-290. https://doi.org/10.1016/j.ijfatigue.2013.07.007.   DOI
38 Mao, W., Li, Z., Ogeman, V., Ringsberg, J., 2015. A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions. Mar. Struct. 41, 244-266. https://doi.org/10.1016/j.marstruc.2015.01.001.   DOI
39 BV, 2019. Bureau Veritas rules for the classification of steel ships pt. b, ch. 5, sec 2.
40 DNV GL maritime publications, 2016. Container ship update.
41 Im, H., Vladimir, N., Malenica, S., Cho, D., 2017. Hydroelastic response of 19,000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity. Int. J. Nav. Archit. Ocean Eng. 9, 339-349. https://doi.org/10.1016/j.ijnaoe.2016.11.004.   DOI