DOI QR코드

DOI QR Code

Optimization of Concentrated Acid Hydrolysis of Waste Paper Using Response Surface Methodology

  • Jung, Ji Young (Division of Environmental Forest Science, Gyeongsang National University, Institute of Agriculture & Life Sciences) ;
  • Choi, Myung Suk (Division of Environmental Forest Science, Gyeongsang National University, Institute of Agriculture & Life Sciences) ;
  • Yang, Jae Kyung (Division of Environmental Forest Science, Gyeongsang National University, Institute of Agriculture & Life Sciences)
  • Received : 2012.09.10
  • Accepted : 2013.03.22
  • Published : 2013.03.25

Abstract

Waste paper stands for the major biodegradable organic fraction of most of municipal solid waste. The potential of waste paper for glucose production was investigated in this current work. The pretreatment was accomplished by first subjecting waste paper to disintegration time (30 s), followed by ink removal of disintegrated waste paper using an deinking agent. Concentrated acid hydrolysis of waste paper with sulfuric acid was optimized to maximize glucose conversion. The concentrated acid hydrolysis conditions for waste paper (disintegrated time: 30 s, deinking agent loading : 15 ml) were optimized by using central composite design and response surface methodology. The optimization process employed a central composite design, where the investigated variables were acid concentration (60~80%), loading sulfuric acid (1~5 ml) and reaction time (1~5 h). All the tested variables were identified to have significant effects (p < 0.05) on glucose conversion. The optimum concentrated acid hydrolysis conditions were acid concentration of 70.8%, loading sulfuric acid of 3.2 ml and a reaction time of 3.6 h. This research of concentrated acid hydrolysis was a promising method to improve glucose conversion for waste paper.

Keywords

References

  1. Baudel, H. M., Zaror, C. and C. A. M. de Abreu. 2005. Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Ind. Crops Prod. 21: 309-315. https://doi.org/10.1016/j.indcrop.2004.04.013
  2. Beneventi, D., Benesse, M., Carre, B., Julien Saint Amand, F., and L. Salgueiro. 2007. Modelling deinking selectivity in multistage flotation systems. Sep. Purif. Technol., 54: 77-87. https://doi.org/10.1016/j.seppur.2006.08.010
  3. Bolan, N. S. and V. P., Duraisamy. 2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 41: 533-555. https://doi.org/10.1071/SR02122
  4. Chantigny, M. H., Angers, D. A., and C. J. Beauchamps. 1999. Aggregation and organic matter decomposition in soils amended with de-inking paper sludge Soil Science Society of America Journal, 63: 1214-1221. https://doi.org/10.2136/sssaj1999.6351214x
  5. Chen, Y., R. R. Sharma-Shivappa, D. Keshwani, and C. Chen. 2007. Potential of agricultural residues and hay for bioethanol production. Appl. Biochem. Biotechnol 142: 276-290. https://doi.org/10.1007/s12010-007-0026-3
  6. Chun S. G., T. T. Hui, T. L. Keat, and B. Nicolas. 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy 35(9): 4025-4033. https://doi.org/10.1016/j.biombioe.2011.06.034
  7. Clarkson, W. W. and W. Xiao. 2000. Benchscale anaerobic bioconversion of newsprint and office paper. Water Sci. Technol. 41: 93-100.
  8. Deng, L., L. Xiao, Y. Tang, and X. Song. 2010. Effects of pretreatment on enzymatic hydrolysis of cellulose for waste paper. J. Beijing Forestry Univ. 32: 170-175 (in Chinese).
  9. Ferreira, S., A. P. Duarte, M. H. L. Ribeiro, J. A. Queiroz, and F. C. Domingues. 2009. Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal 45: 192-200. https://doi.org/10.1016/j.bej.2009.03.012
  10. Giovanni, M. 1983. Response surface methodology and product optimization. Food Technol. November: 41-45.
  11. Gnansounou, E., A. Dauriat, and C. E. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour. Technol. 96: 985-1002. https://doi.org/10.1016/j.biortech.2004.09.015
  12. Holtzapple, M. T. and J. E. Lundeen. 1992. R Sturgis Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX) Appl. Biochem. Biotechnol. 34/35: 5-21. https://doi.org/10.1007/BF02920530
  13. Ingram, L .O., H. C. Aldrich, C. C. Borges, T. B. Causey, A. Martínez, and F. Morales. 1999. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15(5): 855-866. https://doi.org/10.1021/bp9901062
  14. Iranmahboob, J., F. Nadim, and S. Monemi. 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy 22: 401-404. https://doi.org/10.1016/S0961-9534(02)00016-8
  15. Jannick, H., Schmidt, P. Holm, A. Merrild, and P. Christensen. 2007. Life cycle assessment of the waste hierarchy-A Danish case study on waste paper, Waste Management 27(11): 1519-1530. https://doi.org/10.1016/j.wasman.2006.09.004
  16. Karimi, K., S. Kheradmandinia, and M. J. Taherzadeh. 2006. Conversion of rice straw to sugars by diluteacid ydrolysis. Biomass and Bioenergy 30: 247-253. https://doi.org/10.1016/j.biombioe.2005.11.015
  17. Kuhad, R. C., G. Mehta, R. Gupta, and K. K. Sharma. 2010. Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy 34(8): 1189-1194. https://doi.org/10.1016/j.biombioe.2010.03.009
  18. Laopaiboon, P., A. Thani, and V. Leelavatcharamas. 2010. L. Laopaibooncid hydrolysis of sugarcane bagasse for lactic acid production ioresour. Technol. 101: 1036-1043.
  19. Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tenborg, K. Stenberg, G. Zacchi, and N. O. Nilvebrant. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  20. Lavarack, B. P., G. J. Griffin, and D. Rodman. 2002. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy 23: 367-380. https://doi.org/10.1016/S0961-9534(02)00066-1
  21. Lay, J. J. and Y. J. Lee. 1999. T. Noike Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water. Res. 33(11): 2579-2586. https://doi.org/10.1016/S0043-1354(98)00483-7
  22. Lee, Y. Y., Z. Wu, and R. W. Torget. 2000. Modeling of countercurrent shrinkingbed reactor in dilute-acid hydrolysis of lignocellulosic biomass. Bioresour. Technol. 71: 29-39. https://doi.org/10.1016/S0960-8524(99)00053-X
  23. Li A., B. Antizar-Ladislao, and M. Khraisheh. 2007. Bioconversion of municipal solid waste to glucose for bioethanol production. Bioprocess. Biosyst. Eng. 30: 189-196. https://doi.org/10.1007/s00449-007-0114-3
  24. Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066
  25. Li, S., X. Zhang, and J. M. Andresen. 2012. Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel 92: 84-88. https://doi.org/10.1016/j.fuel.2011.07.012
  26. Mamma, D., P. Christakopoulos, D. Koullas, D. Kekos, B. J. Macris, and E. Kouki. 1995. An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy 8(2): 99-103. https://doi.org/10.1016/0961-9534(95)00006-S
  27. Mathew P. and K. G. R. Nair. 2006. Ensilation of shrimp waste by Lactobacillus fermentum. Fish Technol. 43: 59-64.
  28. Mckinney, R. W. J. 1995. Technology of paper recycling, 1st ed., Chapman & Hall, Glasgow, UK. pp: 130-156.
  29. Park, E. Y., P. N. Anh, and N. Okuda. 2004. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae, Bioresour. Technol. 93: 77-83. https://doi.org/10.1016/j.biortech.2003.08.017
  30. Park, E. Y., Y. Ikeda, and N. Okuda. 2002. Empirical evaluation of cellulase on enzymatic hydrolysis of waste OA paper. Biotechnol. Bioprocess Eng. 7: 1-6. https://doi.org/10.1007/BF02935871
  31. Rahman, S. H. A., J. P. Choudhury, A. L. Ahmad, and A. H. 2007. Kamaruddin Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technol. 98: 554-559.
  32. Ritter, G. J., R. M, Seborg. and R. L. Mitchell. 1932. Factors Affecting quantitative determination of lignin by 72 per cent sulfuric acid method. Ind. Eng. Chem. Anal. Ed. 4(2): 202∼204. https://doi.org/10.1021/ac50078a017
  33. Rodriguez-Chong, A., J. A. Ramirez, G. Garrote, and M. Vazquez. 2004. Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61: 143-152. https://doi.org/10.1016/S0260-8774(03)00080-3
  34. Romero, I., E. Ruiz, E. Castro, and M. Moya. 2010. Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design 88: 633-640. https://doi.org/10.1016/j.cherd.2009.10.007
  35. Romero, I., S. Sanchez, M. Moya, E. Castro, E. Ruiz, and V. Bravo. 2007. Fermentation of olive tree pruning acidhydrolysates by Pachysolen tannophilus. Biochem Eng. J. 36: 108-115. https://doi.org/10.1016/j.bej.2007.02.006
  36. Saeman, J. F., J. L. Bubl, and E. E. Harris. 1945. Quantitative Saccharification of Wood and Cellulose. Ind. Eng. Chem. Anal. Ed. 17 (1): 35-37. https://doi.org/10.1021/i560137a008
  37. Sun, Y. and J. J. Cheng. 2005. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96: 1599-1606. https://doi.org/10.1016/j.biortech.2004.12.022
  38. Teghammar, A., J. Yngvesson, M. Lundin, M. J. Taherzadeh, and I. S. Horváth. 2010. Pretreatment of paper tube residuals for improved biogas production. Bioresour. Technol. 101: 1206-1212. https://doi.org/10.1016/j.biortech.2009.09.029
  39. Torget, R. W., J. S. Kim, and Y. Y. Lee. 2000. Fundamental aspects of dilute acid hydrolysis of hardwood carbohydrates: cellulose hydrolysis. Ind. Eng. Chem. Res. 39: 2817-2825. https://doi.org/10.1021/ie990915q
  40. Um, B. H. and S. H. Bae. 2011. Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse. Korean J. Chem. Eng. 28(5): 1172-1176. https://doi.org/10.1007/s11814-011-0058-9
  41. Wiselogel, A., S. Tyson, and D. Johnson. 1996. Biomass feedstock resources and composition. In: Wyman, C.E. (Ed.), Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC: 105-118.
  42. Xiao, W. and W. W. Clarkson. 1997. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8: 61-66. https://doi.org/10.1023/A:1008297211954
  43. Yanez, R., J. L. Alonso, and J. C. Parajo. 2004. Production of hemicellulosic sugars and glucose from residual corrugated cardboard, Process Biochem. 39: 1543-1551. https://doi.org/10.1016/S0032-9592(03)00283-8
  44. Zhu, J. Y., F. Tan, K. L.Scallon, Y. Zhao, and Y. Deng. 2005. Deinking selectivity (Zfactor): a newparameter to evaluate to evaluate the performance of flotation deinking process. Sep. Purif. Technol. 43 : 33-41 https://doi.org/10.1016/j.seppur.2004.09.011

Cited by

  1. Dark Fermentative Hydrogen Gas Production from Lime Treated Waste Paper Towel Hydrolysate 2018, https://doi.org/10.1007/s12649-017-9957-2
  2. Hydrogen gas production from waste paper by sequential dark fermentation and electrohydrolysis vol.41, pp.19, 2016, https://doi.org/10.1016/j.ijhydene.2015.12.087
  3. Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential alkaline and acid hydrolysis vol.96, 2016, https://doi.org/10.1016/j.renene.2016.04.082
  4. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus vol.217, 2018, https://doi.org/10.1016/j.fuel.2017.12.108
  5. Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation pp.1877-265X, 2018, https://doi.org/10.1007/s12649-018-0400-0
  6. Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production pp.1520-5703, 2019, https://doi.org/10.1080/01614940.2018.1479503