Browse > Article
http://dx.doi.org/10.5658/WOOD.2013.41.2.87

Optimization of Concentrated Acid Hydrolysis of Waste Paper Using Response Surface Methodology  

Jung, Ji Young (Division of Environmental Forest Science, Gyeongsang National University, Institute of Agriculture & Life Sciences)
Choi, Myung Suk (Division of Environmental Forest Science, Gyeongsang National University, Institute of Agriculture & Life Sciences)
Yang, Jae Kyung (Division of Environmental Forest Science, Gyeongsang National University, Institute of Agriculture & Life Sciences)
Publication Information
Journal of the Korean Wood Science and Technology / v.41, no.2, 2013 , pp. 87-99 More about this Journal
Abstract
Waste paper stands for the major biodegradable organic fraction of most of municipal solid waste. The potential of waste paper for glucose production was investigated in this current work. The pretreatment was accomplished by first subjecting waste paper to disintegration time (30 s), followed by ink removal of disintegrated waste paper using an deinking agent. Concentrated acid hydrolysis of waste paper with sulfuric acid was optimized to maximize glucose conversion. The concentrated acid hydrolysis conditions for waste paper (disintegrated time: 30 s, deinking agent loading : 15 ml) were optimized by using central composite design and response surface methodology. The optimization process employed a central composite design, where the investigated variables were acid concentration (60~80%), loading sulfuric acid (1~5 ml) and reaction time (1~5 h). All the tested variables were identified to have significant effects (p < 0.05) on glucose conversion. The optimum concentrated acid hydrolysis conditions were acid concentration of 70.8%, loading sulfuric acid of 3.2 ml and a reaction time of 3.6 h. This research of concentrated acid hydrolysis was a promising method to improve glucose conversion for waste paper.
Keywords
waste paper; pretreatment; acid hydrolysis; central composite design; response surface methodology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xiao, W. and W. W. Clarkson. 1997. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8: 61-66.   DOI   ScienceOn
2 Yanez, R., J. L. Alonso, and J. C. Parajo. 2004. Production of hemicellulosic sugars and glucose from residual corrugated cardboard, Process Biochem. 39: 1543-1551.   DOI   ScienceOn
3 Zhu, J. Y., F. Tan, K. L.Scallon, Y. Zhao, and Y. Deng. 2005. Deinking selectivity (Zfactor): a newparameter to evaluate to evaluate the performance of flotation deinking process. Sep. Purif. Technol. 43 : 33-41   DOI   ScienceOn
4 Li, S., X. Zhang, and J. M. Andresen. 2012. Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel 92: 84-88.   DOI   ScienceOn
5 Mamma, D., P. Christakopoulos, D. Koullas, D. Kekos, B. J. Macris, and E. Kouki. 1995. An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy 8(2): 99-103.   DOI   ScienceOn
6 Mathew P. and K. G. R. Nair. 2006. Ensilation of shrimp waste by Lactobacillus fermentum. Fish Technol. 43: 59-64.
7 Mckinney, R. W. J. 1995. Technology of paper recycling, 1st ed., Chapman & Hall, Glasgow, UK. pp: 130-156.
8 Park, E. Y., P. N. Anh, and N. Okuda. 2004. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae, Bioresour. Technol. 93: 77-83.   DOI   ScienceOn
9 Park, E. Y., Y. Ikeda, and N. Okuda. 2002. Empirical evaluation of cellulase on enzymatic hydrolysis of waste OA paper. Biotechnol. Bioprocess Eng. 7: 1-6.   DOI   ScienceOn
10 Rahman, S. H. A., J. P. Choudhury, A. L. Ahmad, and A. H. 2007. Kamaruddin Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technol. 98: 554-559.
11 Ritter, G. J., R. M, Seborg. and R. L. Mitchell. 1932. Factors Affecting quantitative determination of lignin by 72 per cent sulfuric acid method. Ind. Eng. Chem. Anal. Ed. 4(2): 202∼204.   DOI
12 Rodriguez-Chong, A., J. A. Ramirez, G. Garrote, and M. Vazquez. 2004. Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61: 143-152.   DOI   ScienceOn
13 Romero, I., E. Ruiz, E. Castro, and M. Moya. 2010. Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design 88: 633-640.   DOI   ScienceOn
14 Romero, I., S. Sanchez, M. Moya, E. Castro, E. Ruiz, and V. Bravo. 2007. Fermentation of olive tree pruning acidhydrolysates by Pachysolen tannophilus. Biochem Eng. J. 36: 108-115.   DOI   ScienceOn
15 Saeman, J. F., J. L. Bubl, and E. E. Harris. 1945. Quantitative Saccharification of Wood and Cellulose. Ind. Eng. Chem. Anal. Ed. 17 (1): 35-37.   DOI
16 Sun, Y. and J. J. Cheng. 2005. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96: 1599-1606.   DOI   ScienceOn
17 Teghammar, A., J. Yngvesson, M. Lundin, M. J. Taherzadeh, and I. S. Horváth. 2010. Pretreatment of paper tube residuals for improved biogas production. Bioresour. Technol. 101: 1206-1212.   DOI   ScienceOn
18 Torget, R. W., J. S. Kim, and Y. Y. Lee. 2000. Fundamental aspects of dilute acid hydrolysis of hardwood carbohydrates: cellulose hydrolysis. Ind. Eng. Chem. Res. 39: 2817-2825.   DOI   ScienceOn
19 Um, B. H. and S. H. Bae. 2011. Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse. Korean J. Chem. Eng. 28(5): 1172-1176.   DOI   ScienceOn
20 Wiselogel, A., S. Tyson, and D. Johnson. 1996. Biomass feedstock resources and composition. In: Wyman, C.E. (Ed.), Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC: 105-118.
21 Giovanni, M. 1983. Response surface methodology and product optimization. Food Technol. November: 41-45.
22 Iranmahboob, J., F. Nadim, and S. Monemi. 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy 22: 401-404.   DOI   ScienceOn
23 Gnansounou, E., A. Dauriat, and C. E. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour. Technol. 96: 985-1002.   DOI   ScienceOn
24 Holtzapple, M. T. and J. E. Lundeen. 1992. R Sturgis Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX) Appl. Biochem. Biotechnol. 34/35: 5-21.   DOI
25 Ingram, L .O., H. C. Aldrich, C. C. Borges, T. B. Causey, A. Martínez, and F. Morales. 1999. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15(5): 855-866.   DOI   ScienceOn
26 Jannick, H., Schmidt, P. Holm, A. Merrild, and P. Christensen. 2007. Life cycle assessment of the waste hierarchy-A Danish case study on waste paper, Waste Management 27(11): 1519-1530.   DOI   ScienceOn
27 Karimi, K., S. Kheradmandinia, and M. J. Taherzadeh. 2006. Conversion of rice straw to sugars by diluteacid ydrolysis. Biomass and Bioenergy 30: 247-253.   DOI   ScienceOn
28 Kuhad, R. C., G. Mehta, R. Gupta, and K. K. Sharma. 2010. Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy 34(8): 1189-1194.   DOI   ScienceOn
29 Laopaiboon, P., A. Thani, and V. Leelavatcharamas. 2010. L. Laopaibooncid hydrolysis of sugarcane bagasse for lactic acid production ioresour. Technol. 101: 1036-1043.
30 Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tenborg, K. Stenberg, G. Zacchi, and N. O. Nilvebrant. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 24: 151-159.   DOI   ScienceOn
31 Li A., B. Antizar-Ladislao, and M. Khraisheh. 2007. Bioconversion of municipal solid waste to glucose for bioethanol production. Bioprocess. Biosyst. Eng. 30: 189-196.   DOI
32 Lavarack, B. P., G. J. Griffin, and D. Rodman. 2002. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy 23: 367-380.   DOI   ScienceOn
33 Lay, J. J. and Y. J. Lee. 1999. T. Noike Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water. Res. 33(11): 2579-2586.   DOI   ScienceOn
34 Lee, Y. Y., Z. Wu, and R. W. Torget. 2000. Modeling of countercurrent shrinkingbed reactor in dilute-acid hydrolysis of lignocellulosic biomass. Bioresour. Technol. 71: 29-39.   DOI   ScienceOn
35 Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900-4906.   DOI   ScienceOn
36 Baudel, H. M., Zaror, C. and C. A. M. de Abreu. 2005. Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Ind. Crops Prod. 21: 309-315.   DOI   ScienceOn
37 Beneventi, D., Benesse, M., Carre, B., Julien Saint Amand, F., and L. Salgueiro. 2007. Modelling deinking selectivity in multistage flotation systems. Sep. Purif. Technol., 54: 77-87.   DOI   ScienceOn
38 Bolan, N. S. and V. P., Duraisamy. 2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 41: 533-555.   DOI   ScienceOn
39 Chantigny, M. H., Angers, D. A., and C. J. Beauchamps. 1999. Aggregation and organic matter decomposition in soils amended with de-inking paper sludge Soil Science Society of America Journal, 63: 1214-1221.   DOI
40 Chen, Y., R. R. Sharma-Shivappa, D. Keshwani, and C. Chen. 2007. Potential of agricultural residues and hay for bioethanol production. Appl. Biochem. Biotechnol 142: 276-290.   DOI   ScienceOn
41 Chun S. G., T. T. Hui, T. L. Keat, and B. Nicolas. 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy 35(9): 4025-4033.   DOI   ScienceOn
42 Clarkson, W. W. and W. Xiao. 2000. Benchscale anaerobic bioconversion of newsprint and office paper. Water Sci. Technol. 41: 93-100.
43 Deng, L., L. Xiao, Y. Tang, and X. Song. 2010. Effects of pretreatment on enzymatic hydrolysis of cellulose for waste paper. J. Beijing Forestry Univ. 32: 170-175 (in Chinese).
44 Ferreira, S., A. P. Duarte, M. H. L. Ribeiro, J. A. Queiroz, and F. C. Domingues. 2009. Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal 45: 192-200.   DOI   ScienceOn