DOI QR코드

DOI QR Code

Design methodology in transverse webs of the torsional box structure in an ultra large container ship

  • Silva-Campillo, Arturo (Department of Naval Architecture, Shipbuilding and Ocean Engineering, Universidad Politecnica de Madrid (UPM)) ;
  • Suarez-Bermejo, J.C. (Department of Material Science, Structural Materials Research Centre (CIME), Universidad Politecnica de Madrid (UPM)) ;
  • Herreros-Sierra, M.A. (Department of Naval Architecture, Shipbuilding and Ocean Engineering, Universidad Politecnica de Madrid (UPM)) ;
  • de Vicente, M. (Department of Naval Architecture, Shipbuilding and Ocean Engineering, Universidad Politecnica de Madrid (UPM))
  • Received : 2021.04.27
  • Accepted : 2021.08.21
  • Published : 2021.11.30

Abstract

Container ships has a transverse section in the form of an open profile, making it very sensitive to torsion phenomena. To minimize this effect, a structure known as a torsion box exists, which is subject to high stresses influenced by the fatigue phenomenon and the existence of cut-outs, for the passage of the longitudinal stiffeners, acting as stress concentrators. The aim of this study is to propose a two-stage design methodology to aid designers in satisfying the structural requirements and contribute with to a better understanding of the considered structure. The transverse webs of a torsional box structure are examined by comparing different cut-out geometries from numerical models with different regular load conditions to obtain the variables of the fatigue safety factor through linear regression models. The most appropriate geometry of the torsion box is established in terms of minimum weight, from nonlinear multivariable optimization models.

Keywords

Acknowledgement

The authors wish to acknowledge the support of the Naval Architecture and Marine Engineering School of the Universidad Politecnica de Madrid (UPM).

References

  1. Alfred, E., Benson, S., Hirdaris, S., Dow, R., 2016. Design safety margin of a 10,000 TEU container ship through ultimate hull girder load combination analysis. Mar. Struct. 46, 78-101. https://doi.org/10.1016/j.marstruc.2015.12.003.
  2. Ameli, I., Behrouz, A., Lin, M., Agbo, S., Cheng, R., Duan, D., Adeeb, S., 2019. Estimation of the CTOD-crack growth curves in SENT specimens using the eXtended finite element method. Int. J. Pres. Ves. Pip. 169, 16-25. https://doi.org/10.1016/j.ijpvp.2018.11.008.
  3. Barhoumi, M., Storhaug, G., 2014. Assessment of whipping and springing on a large container vessel. Int. J. Nav. Archit. Ocean Eng. 6, 442-458. https://doi.org/10.2478/IJNAOE-2013-0191.
  4. BV, 2019. Bureau Veritas rules for the classification of steel ships pt. b, ch. 5, sec 2.
  5. Chen, X., Wu, Y., Cui, W., Jensen, J., 2006. Review of hydroelasticity theories for global response of marine structures. Ocean Eng. 33, 439-457. https://doi.org/10.1016/j.oceaneng.2004.04.010.
  6. DNV, G.L., 2015. Det Norske Veritas rules for classification ships pt, p. 16, 3 ch.8.
  7. DNV GL maritime publications, 2016. Container ship update.
  8. Ferraz de Oliveira, S., 2015. Structural analysis of open deck ship hulls subjected to bending, shear and torsional loadings (Master Thesis).
  9. French, M., 2008. Fundamentals of Optimization. Methods, Minimum Principles, and Applications for Making Things Better. Springer.
  10. Fricke, W., Cui, W., Kierkegaard, H., Kihl, D., Koval, M., Mikkola, T., Parmentier, G., Toyosada, M., Yoon, J., 2002. Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Mar. Struct. 15, 1-13. https://doi.org/10.1016/S0951-8339(01)00016-8.
  11. Fukasaka, T., Mukai, K., 2014. On the effects of hull-girder vibration upon fatigue strength of a post-panamax container ship disaggregated by short-term sea state. Int. J. Nav. Archit. Ocean Eng. 6, 431-441. https://doi.org/10.2478/IJNAOE2013-0190.
  12. Gerber, W., 1874. Bestimmung der zulossigen spannungen in eisen constructionen. z. bayer. archit. ing, ver (6), 101.
  13. Goodman, J., 1899. Mechanics Applied to Engineering. Longman-green.
  14. Huang, W., Garbatov, Y., Guedes Soares, C., 2013. Fatigue reliability assessment of a complex welded structure subjected to multiple cracks. Eng. Struct. 56, 868-879. https://doi.org/10.1016/j.engstruct.2013.06.011.
  15. Hyun, M., Min, S., Nam, Y., Geun, S., Eon, K., Rae, G., 2009. A comparative study for the fatigue assessment of a ship structure by use of hot spot stress and structural stress approaches. Ocean Eng. 36, 1067-1072. https://doi.org/10.1016/j.oceaneng.2009.07.001.
  16. Hyun, M., Won, S., Hwan, J., Seok, K., Kyoo, J., Ho, J., 2010. An experimental study on the fatigue strength assessment of longi-web connections in ship structures using structural stress. Int. J. Fatig. 32, 318-329. https://doi.org/10.1016/j.ijfatigue.2009.06.018.
  17. Iijima, K., Shigemi, T., Miyake, R., Kumano, A., 2004. A practical method for torsional strength assessment of container ship structures. Mar. Struct. 17, 355-384. https://doi.org/10.1016/j.marstruc.2004.08.011.
  18. Im, H., Vladimir, N., Malenica, S., Cho, D., 2017. Hydroelastic response of 19,000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity. Int. J. Nav. Archit. Ocean Eng. 9, 339-349. https://doi.org/10.1016/j.ijnaoe.2016.11.004.
  19. JFE, 2021. Steel Corporation Catalog: Steel Sections for Shipbuilding. https://www.jfe-steel.co.jp/en/products/shapes/catalog/d1e-002.pdf.
  20. Li, Z., Ringsberg, J., Storhaug, G., 2013. Time-domain fatigue assessment of ship sideshell structures. Int. J. Fatig. 55, 276-290. https://doi.org/10.1016/j.ijfatigue.2013.07.007.
  21. Mao, W., Li, Z., Ogeman, V., Ringsberg, J., 2015. A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions. Mar. Struct. 41, 244-266. https://doi.org/10.1016/j.marstruc.2015.01.001.
  22. Mao, W., Ringsberg, J., Rychlik, I., 2010. The effect of whipping/springing on fatigue damage and extreme response of ship structures. In: Proceedings of the ASME 29th International Conference on Ocean, Offshore and Artic Engineering (OMAE). https://doi.org/10.1115/OMAE2010-20124.
  23. Moan, T., 2009. Development of accidental collapse limit state criteria for offshore structures. Struct. Saf. 31, 124-135. https://doi.org/10.1016/j.strusafe.2008.06.004.
  24. Neuberg, O., Drimer, N., 2017. Fatigue limit state design of fast boats. Mar. Struct. 55, 17-36. https://doi.org/10.1016/j.marstruc.2017.05.002.
  25. Okada, T., Takedo, Y., Maeda, T., 2016. On board measurements of stresses and deflections of a post-panamax containership and its feedback to rational design. Mar. Struct. 19, 141-172. https://doi.org/10.1016/j.marstruc.2006.09.001.
  26. Paik, J., Thayamballi, A., 2003. Ultimate Limit State Design of Steel-Plated Structures. John Wiley & Sons, Chichester, UK.
  27. Paik, J., Thayamballi, A., Pedersen, P., Park, Y., 2001. Ultimate strength of ship hulls under torsion. Ocean Eng. 28, 1097-1133. https://doi.org/10.1016/S0029-8018(01)00015-4.
  28. Patil, H., Jeyakarthikeyan, P.V., 2018. Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS. IOP Conf. Ser. Mater. Sci. Eng. 402, 012065. https://doi.org/10.1088/1757-899X/402/1/012065.
  29. Senjanovic, I., Vladimir, N., Hadzic, N., Tomic, M., 2011a. Beam structural modelling in hydroelastic analysis of ultra large container ships. In: Recent Advances in Vibration Analysis Ch, vol. 10. https://doi.org/10.5772/21616.
  30. Senjanovic, I., Vladimir, N., Tomic, M., 2011b. Investigation of torsion, warping and distortion of large container ships. Ocean Syst. Eng. 1, 73-93. https://doi.org/10.12989/ose.2011.1.1.073.
  31. Senjanovic, I., Vladimir, N., Tomic, M., Hadzic, N., Malenica, S., 2014. Global hydroelastic analysis of ultra large container ships by improved beam structural model. Int. J. Nav. Archit. Ocean Eng. 6, 1041-1063. https://doi.org/10.2478/IJNAOE-2013-0230.
  32. Shama, M., 2010. Torsion and Shear Stresses in Ships. Springer.
  33. Soderberg, C., 1930. Factor of safety and working stress. Trans. Am. Soc. Mech. Eng. 1, 13-28.
  34. Sun, H., Soares, C., 2003. An experimental study of ultimate torsional strength of a ship-type hull girder with a large deck opening. Mar. Struct. 16, 50-67. https://doi.org/10.1016/S0951-8339(02)00051-5.
  35. Tezdogan, T., Incesik, A., Turan, O., Kellett, P., 2016. Assessing the impact of a slow steaming approach on reducing the fuel consumption of a containership advancing in head seas. Transp. Res. Proc. 14, 1659-1668. https://doi.org/10.1016/j.trpro.2016.05.131.
  36. Vidhya, M.S., Christina, K.V.M., 2020. Fatigue life, fatigue damage, fatigue factor of safety, fatigue sensitivity, biaxiality indication and equivalent stress of a radial connecting rod. Int. Res. J. Eng. Technol. 7 (9), 1499-1502.
  37. Vincent, I., Jensen, J., 2014. Measurements in a container ship of wave-induced hull girder stresses in excess of design values. Mar. Struct. 37, 54-85. https://doi.org/10.1016/j.marstruc.2014.02.006.
  38. Wasmi, H.R., Abdullah, M.Q., Jassim, O.A., 2006. Testing and estimation fatigue life of a flange connection used in power plant by ANSYS. Int. J. Curr. Eng. and Technol. 6 (4), 1302-1306.
  39. Wu, W., Lin, J., 2015. Productivity growth, scale economies, ship size economies and technical progress for the container shipping industry in Taiwan. Transport. Res. part e 73, 1-16. https://doi.org/10.1016/j.tre.2014.10.011.
  40. Zhibin, Z., 2005. An efficient sequential quadratic programming algorithm for nonlinear programming. J. Comput. Appl. Math. 175, 447-464. https://doi.org/10.1016/j.cam.2004.07.001.
  41. Zhu, Z., Ren, H., Li, C., Zhou, X., 2020. Ultimate limit state function and its fitting method of damaged ship under combined loads. J. Mar. Sci. Eng. 8, 117. https://doi.org/10.3390/jmse8020117.