• Title/Summary/Keyword: Method selection

Search Result 6,597, Processing Time 0.034 seconds

Differences by Selection Method for Exposure Factor Input Distribution for Use in Probabilistic Consumer Exposure Assessment

  • Kang, Sohyun;Kim, Jinho;Lim, Miyoung;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.5
    • /
    • pp.266-271
    • /
    • 2022
  • Background: The selection of distributions of input parameters is an important component in probabilistic exposure assessment. Goodness-of-fit (GOF) methods are used to determine the distribution of exposure factors. However, there are no clear guidelines for choosing an appropriate GOF method. Objectives: The outcomes of probabilistic consumer exposure assessment were compared by using five different GOF methods for the selection of input distributions: chi-squared test, Kolmogorov-Smirnov test (K-S), Anderson-Darling test (A-D), Akaike information criterion (AIC) and Bayesian information criterion (BIC). Methods: Individual exposures were estimated based on product usage factor combinations from 10,000 respondents. The distribution of individual exposure was considered as the true value of population exposures. Results: Among the five GOF methods, probabilistic exposure distributions using the A-D and K-S methods were similar to individual exposure estimations. Comparing the 95th percentiles of the probabilistic distributions and the individual estimations for 10 CPs, there were 0.73 to 1.92 times differences for the A-D method, and 0.73 to 1.60 times differences (excluding tire-shine spray) for the K-S method. Conclusions: There were significant differences in exposure assessment results among the selection of the GOF methods. Therefore, the GOF methods for probabilistic consumer exposure assessment should be carefully selected.

ASVMRT: Materialized View Selection Algorithm in Data Warehouse

  • Yang, Jin-Hyuk;Chung, In-Jeong
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • In order to acquire a precise and quick response to an analytical query, proper selection of the views to materialize in the data warehouse is crucial. In traditional view selection algorithms, all relations are considered for selection as materialized views. However, materializing all relations rather than a part results in much worse performance in terms of time and space costs. Therefore, we present an improved algorithm for selection of views to materialize using the clustering method to overcome the problem resulting from conventional view selection algorithms. In the presented algorithm, ASVMRT (Algorithm for Selection of Views to Materialize using Reduced Table), we first generate reduced tables in the data warehouse using clustering based on attribute-values density, and then we consider the combination of reduced tables as materialized views instead of a combination of the original base relations. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs are approximately 1.8 times better than conventional algorithms.

Sequencing to Minimize the Total Utility Work in Car Assembly Lines (자동차 조립라인에서 총 가외작업을 최소로 하는 투입순서 결정)

  • 현철주
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.69-82
    • /
    • 2003
  • The sequence which minimizes overall utility work in car assembly lines reduces the cycle time, the number of utility workers, and the risk of conveyor stopping. This study suggests mathematical formulation of the sequencing problem to minimize overall utility work, and present a genetic algorithm which can provide a near optimal solution in real time. To apply a genetic algorithm to the sequencing problem in car assembly lines, the representation, selection methods, and genetic parameters are studied. Experiments are carried out to compare selection methods such as roullette wheel selection, tournament selection and ranking selection. Experimental results show that ranking selection method outperforms the others in solution quality, whereas tournament selection provides the best performance in computation time.

On loss functions for model selection in wavelet based Bayesian method

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1191-1197
    • /
    • 2009
  • Most Bayesian approaches to model selection of wavelet analysis have drawbacks that computational cost is expensive to obtain accuracy for the fitted unknown function. To overcome the drawback, this article introduces loss functions which are criteria for level dependent threshold selection in wavelet based Bayesian methods with arbitrary size and regular design points. We demonstrate the utility of these criteria by four test functions and real data.

  • PDF

Introduction to a Novel Optimization Method : Artificial Immune Systems (새로운 최적화 기법 소개 : 인공면역시스템)

  • Yang, Byung-Hak
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.458-468
    • /
    • 2007
  • Artificial immune systems (AIS) are one of natural computing inspired by the natural immune system. The fault detection, the pattern recognition, the system control and the optimization are major application area of artificial immune systems. This paper gives a concept of artificial immune systems and useful techniques as like the clonal selection, the immune network theory and the negative selection. A concise survey on the optimization problem based on artificial immune systems is generated. The overall performance of artificial immune systems for the optimization problem is discussed.

Oil Tank Location Problem Solving with Mixed Integer Programming & GIS (혼합정수계획법 및 GIS를 활용한 유류저장탱크의 입지선정)

  • 최기주;김숙희;신강원
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.99-108
    • /
    • 2001
  • A framework of using and integrating GIS and OR tools for determining the best site selection has been provided. In this research, we demonstrated that both the P-Median heuristic method and MIP method can be successfully applied to the optimum site selection problem of oil tank location selection. Furthermore, the results identified by both approaches are identical. To accomplish this, both GIS road and maritime networks have been constructed and combined to calculated the minimum distance matrix, which is required by both approaches. After the application to the Korean peninsula, the facility locations chosen are Kunsan, Yosu, Busan, and Okgye for each district. As has been shown, the power of GIS and both algorithm have been demonstrated throughout the research and further similar research can also be conducted using the power of GIS and Operations Research tools.

  • PDF

Efficient Key Detection Method in the Correlation Electromagnetic Analysis Using Peak Selection Algorithm

  • Kang, You-Sung;Choi, Doo-Ho;Chung, Byung-Ho;Cho, Hyun-Sook;Han, Dong-Guk
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.556-563
    • /
    • 2009
  • A side channel analysis is a very efficient attack against small devices such as smart cards and wireless sensor nodes. In this paper, we propose an efficient key detection method using a peak selection algorithm in order to find the advanced encryption standard secret key from electromagnetic signals. The proposed method is applied to a correlation electromagnetic analysis (CEMA) attack against a wireless sensor node. Our approach results in increase in the correlation coefficient in comparison with the general CEMA. The experimental results show that the proposed method can efficiently and reliably uncover the entire 128-bit key with a small number of traces, whereas some extant methods can reveal only partial subkeys by using a large number of traces in the same conditions.

Sensor selection approach for damage identification based on response sensitivity

  • Wang, Juan;Yang, Qing-Shan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.53-68
    • /
    • 2017
  • The response sensitivity method in time domain has been applied extensively for damage identification. In this paper, the relationship between the error of damage identification and the sensitivity matrix is investigated through perturbation analysis. An index is defined according to the perturbation amplify effect and an optimal sensor placement method is proposed based on the minimization of that index. A sequential sub-optimal algorithm is presented which results in consistently good location selection. Numerical simulations with a two-dimensional high truss structure are conducted to validate the proposed method. Results reveal that the damage identification using the optimal sensor placement determined by the proposed method can identify multiple damages of the structure more accurately.

Pole Selection Method for Delaunay Triangulation (Delaunay 삼각화 시 Pole 선택 방법)

  • Park, Tae-Jong;Park, Hyeong-Tae;Park, Sang-Chul;Chang, Min-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.422-428
    • /
    • 2007
  • Presented in the paper is a procedure to reconstruct a triangular mesh from a point cloud. Although, the proposed procedure is based on the well-known Voronoi diagram approach, it introduces a selection method of 'Pole' to improve the quality of resulting mesh. To select the appropriate Poles for high quality of Triangular mesh, the patterns that the Poles affect to the mesh quality are carefully analyzed. It is possible to improve the mesh quality by controlling the selection method of 'Pole' in terms of distance limit. The initial mesh obtained by the proposed procedure may include invalid triangles. To relieve this problem, a slicing method is proposed to remove invalid triangles from the initial mesh. At last, correcting technique of normal vectors of generated mesh is introduced.

Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions (가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법)

  • Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.725-730
    • /
    • 2007
  • Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.