• Title/Summary/Keyword: Method of Moments(MoM)

Search Result 38, Processing Time 0.03 seconds

A Hybrid IPO-MoM Technique for Wave Scattering Analysis of Jet Engine (제트 엔진 산란 해석을 위한 하이브리드 IPO-MoM 기법)

  • Lim, Ho;Choi, Seung-Ho;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.791-796
    • /
    • 2009
  • A hybrid iterative physical optics-method of moments(IPO-MoM) technique is presented for the analysis of jet engine structures which are both electrically large and complex. In this technique, the IPO method is used to analyze smooth inlet region and the MoM method is used to analyze electrically complex region inclusive of blades and hub. It is efficient and accurate by virtue of combining the respective merits of both methods. Numerical results are presented and validated through comparison with Mode-FDTD and measured results.

A robust method for derivation of the new closed-form Green관s functions for microstrip structures and its application to a fast MoM (마이크로스트립 구조에 관한 새로운 closed-form 그린함수 유도를 위한 견실한 방법과 빠른 모멘트법으로의 응용)

  • Kim, Eui-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.423-433
    • /
    • 2002
  • A very fast method of moments(MoM) for the analysis of microstrip structure is considered based upon the use of rooftop basis and razor test functions in conjunction with a new closed-form Green's functions. The present method presents a robust approach to obtain the Green's functions which can be derived by use of only one set of approximation parameters independently of operating frequency range. Moreover, using the present MoM scheme, the MoM matrix elements can be analytically evaluated with few number of terms in comparison with the previous method. So, the computational efficiency can be improved significantly without loss of the precision. In order to check the validity of the present method, performance is demonstrated for the example of a coaxially-fed microstrip transmission line and the present results are compared with the previous results.

  • PDF

A Study on Electromagnetic Scattering Analysis of Penetrable Objects Using Block Matrix Preconditioner(BMP) and IE-FFT (Block Matrix Preconditioner와 IE-FFT를 이용한 침투 가능한 구조물의 전자기 산란해석에 관한 연구)

  • Kang, Ju-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.614-621
    • /
    • 2019
  • In this paper, we presents the integral equation-fast Fourier transform(IE-FFT) and block matrix preconditioner (BMP) to solve electromagnetic scattering problems of penetrable structures composed of dielectric or magnetic materials. IE-FFT can significantly improve the amount of calculation to solve the matrix equation constructed from the moment method(MoM). Moreover, the iterative method in conjunction with BMP can be significantly reduce the number of iterations required to solve the matrix equations which are constructed from electrically large structures. Numerical results show that IE-FFT and block matrix preconditioner can solve electromagnetic scattering problems for penetrable objects quickly and accurately.

The Effect of ${\pi}$ Bonds on the Calculated Dipole Moments for Tetrahedral and Square Planar [M(Ⅱ)$O_2S_2$] Type Complexes [M(II) = Co(II), Ni(II), Cu(II) and Zn(II)] (사면체 및 사각형 [M(II)$O_2S_2$]형태 착물의 쌍극자 모멘트에 대한 ${\pi}$결합의 영향 [M(II) = Co(II), Ni(II), Cu(II) 및 Zn])

  • Sangwoon Ahn;Jin Ha Park;Chang Jin Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.265-273
    • /
    • 1982
  • The effect of ${\pi}$ bonds on the calculated dipole moments for square planar and tetrahedral [M(II)$O_2S_2$]] type complexes has been investigated by two different approaches. One is the approximate molecular orbital method based on the assumption that the mixing coefficient CM of the valence basis sets for the central metal ion and the appropriate ligand orbitals is equal for all ${\sigma}$ and ${\pi}$ bonding molecular orbitals. The other is the more refined calculation based on the semiempirical LCAO-MO method. If ${\sigma}$ bonds only are assumed to be formed, the calculated dipole moments for square planar and tetrahedral complexes are lower than those of the experimental values. If the contribution of ${\pi}$ bonds to the calculated dipole moments are fully considered, the calculated dipole moments for both square planar and tetrahedral [M(II)$O_2S_2$]] type complexes are higher than the experimental values. However if ${\pi}$ bonds are assumed to be delocalzed, the calculated dipole moments for tetrahedral [M(II$O_2S_2$]] type complexes fall in the range of the experimental values, but those for square planar complexes deviate from the experimental values. These results suggest that [M(II)$O_2S_2$]] type complexes may have the tetrahedral structure in inert solvent solution. This structure is in agreement with the experimental one. The calculated dipole moments for tetrahedral [M(II)$O_2S_2$]] type complexes indicate that the contribution of ${\pi}$ bonds to the calculated dipole moments may not be neglected.

  • PDF

Comparison of the Numerical, Theoretical, and Empirical Scattering Models for Randomly Rough Surfaces

  • Hong Jin-Young;Oh Yisok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.725-728
    • /
    • 2005
  • The scattering problem of the randomly rough surface is examined by the method of moments(MoM), small perturbation method (SPM), integral equation method (IEM) and the semi-empirical polarimetic model. To apply the numerical technique of the MoM to microwave scattering from a rough surface, at first, many independent randomly rough surfaces with a rms height and a correlation length are generated with Gaussian random deviate. Then, an efficient Monte Carlo simulation technique is applied to estimate the scattering coefficients of the surfaces.

  • PDF

Numerical Evaluation of MoM Diagonal and Off-diagonal Elements for the Analysis of a General Microstrip Structures (마이크로스트립 구조의 해석을 위한 MoM 대각 및 비대각 행렬요소들의 수치계산)

  • 김의중;오병희;이영순;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • When a spatial method of moments(MoM) is used in conjunction with closed-form Greens functions for the analysis of a general microstrip structures of thin or thick substrate, an efficient technique fur the evaluation of MeM off-diagonal matrix elements as well as diagonal elements is proposed. In order to check the validity of the present method, performance is demonstrated for the example of a coaxially-fed microstrip antenna and the present results are compared with the previous results.

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

Analytical Evaluation of MoM Matrix Elements Based upon a New Closed-Form Greenos Functions (새로운 Closed-Form 그린함수에 근거를 둔 MoM 행렬 요소의 해석적 계산)

  • 김의중;이상준;이영순
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • An efficient method of moments(MoM), which can lead to the analytical evaluation of the matrix elements, is proposed to analyze microstrip structures. The present method is formulated in conjunction with use of a new closed-form spatial-domain Green's functions which are derived by use of the integral formula for semi-infinite integrals of Bessel functions. It is observed that the computational efficiency such as the amount of calculation and computation speed has been improved due to the present MoM scheme by a factor of about 4 in comparison with the previous method. To validate the proposed method, several numerical examples are presented.

Analysis of Induced Currents on the Dielectric Cube by the Fusion of MoM and PMCHW Integral Equation (MoM과 PMCHW 적분방정식 융합에 의한 유전체 육면체의 유도전류 계산)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we analysis the electromagnetic scattering of an arbitrary shape dielectric cube subjected to plane wave incidence in three dimensions. MoM(Method of Moments)in which a surface of a body is divided with small triangular patches and equivalence principle are used to fuse the PMCHW(Poggio, Miller, Chang, Harrington, and Wu) Integral Equations with respect to equivalent currents on a dielectric body. Triangular patch and loop-patch basis functions that is robust in wide frequency ranges are used for MoM formulations. Proposed method is very useful to analysis the induced current of arbitrary dielectric bodies and numerical results for a dielectric cube are presented.

Two-Dimensional Sub-diffraction-limited Imaging by an Optimized Multilayer Superlens

  • Ahmadi, Marzieh;Forooraghi, Keyvan;Faraji-Dana, Reza;Ghaffari-Miab, Mohsen
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2016
  • An optimized multilayer superlens is designed, using a rigorous and efficient approach based on the method of moments (MoM) in conjunction with a simulated annealing (SA) algorithm. For the MoM solution, fast evaluation of closed-form Green's functions (GFs) in the spatial domain is performed by applying the complex-image (CI) technique, which obviates the time-consuming numerical evaluation of Sommerfeld integrals. The imaging capability of the superlens is examined with the correlation coefficient; results show that using circular polarization for the incident wave can improve this coefficient. To validate the proposed method, finite-element-based simulations are exploited, which reveal the method's accuracy and computational efficiency. Simulation results indicate that the designed structure is capable of producing two-dimensional sub-diffraction-limited images in the visible range, which may make it more versatile for practical applications. Finally, as a considerable finding, it is demonstrated for the proposed design that using circularly polarized illumination provides improved super-resolving performance, compared to linearly polarized illumination.