• 제목/요약/키워드: Method of Least Squares

검색결과 1,469건 처리시간 0.031초

최소 제곱 무요소법을 이용한 선형 탄성 변형 해석 (The Least-Squares Meshfree Method for Linear Elasticity)

  • 권기찬;박상훈;윤성기
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2312-2321
    • /
    • 2002
  • The first-order least-squares meshfree method for linear elasticity is presented. The conventional and the compatibility-imposed least-squares formulations are studied on the convergence behavior of the solution and the robustness to integration error. Since the least-squares formulation is a type of mixed formulation and induces positive-definite system matrix, by using shape functions of same order for both primal and dual variables, higher rate of convergence is obtained for dual variables than Galerkin formulation. Numerical examples also show that the presented formulations do not exhibit any volumetric locking for the incompressible materials.

토털최소제곱법과 최소제곱법의 비교연구 (A Comparison Study on Total Least Squares and Least Squares)

  • 이임평;최윤수;권재현
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.15-19
    • /
    • 2003
  • The Total Least Squares (TLS) method is introduced in comparison with the conventional Least Squares (LS) method. The principles and mathematical models for both methods are summarized and the comparison results from their applications to a simple geometric example, fitting a straight line to a set of 2D points are presented. As conceptually reasoned, the results clearly indicate that LS is more susceptible of producing wrong parameters with worse precision rather than TLS. For many applications in surveying, can adjustment computation and parameter estimation based on TLS provide better results.

  • PDF

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS

  • Shin, Byeong-Chun
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1291-1310
    • /
    • 2013
  • This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.

A transductive least squares support vector machine with the difference convex algorithm

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.455-464
    • /
    • 2014
  • Unlabeled examples are easier and less expensive to obtain than labeled examples. Semisupervised approaches are used to utilize such examples in an eort to boost the predictive performance. This paper proposes a novel semisupervised classication method named transductive least squares support vector machine (TLS-SVM), which is based on the least squares support vector machine. The proposed method utilizes the dierence convex algorithm to derive nonconvex minimization solutions for the TLS-SVM. A generalized cross validation method is also developed to choose the hyperparameters that aect the performance of the TLS-SVM. The experimental results conrm the successful performance of the proposed TLS-SVM.

RLS (Recursive Least Squares)와 RTLS (Recursive Total Least Squares)의 결합을 이용한 새로운 FIR 시스템 인식 방법 (FIR System Identification Method Using Collaboration Between RLS (Recursive Least Squares) and RTLS (Recursive Total Least Squares))

  • 임준석;편용국
    • 한국음향학회지
    • /
    • 제29권6호
    • /
    • pp.374-380
    • /
    • 2010
  • 잡음이 섞인 입출력 신호를 갖는 시스템 인식 문제는 완전 최소 자승법 (Total Least Squares (TLS))으로 알려져 있다. 완전 최소 자승법의 성능은 입력 신호 부가 잡음 파워와 출력 신호 부가 잡음간의 분산비에 매우 민감하다. 본 논문에서는 TLS의 성능 향상을 위해서 LS (Least Squares)와의 결합을 제안한다. 그 한 형태로 재차적인 TLS (Recursive TLS)와 재차적인 LS (Recursive Least Squares)간의 결합 알고리즘을 제안한다. 이 결합은 잡음간 분산비에 강인한 결과를 낳았다. 모의실험을 통해 얻은 결과로부터 입력 신호에 신호대 잡음비가 5dB를 유지히는 잡음을 부가할 경우 입력 잡음과출력 잡음의 비 $\gamma$가 약 20 정도까지로 적용 범위가 확대되는 결과를 얻었다. 따라서 제안된 결합 방법이 기존의 TLS의 적용 범위를 넓힐 수 있음을 알 수 있다.

최소자승법을 이용한 영구자석 동기전동기의 파라미터 추정 (Parameter Estimation of Permanent Magnet Synchronous Motors using a Least Squares Method)

  • 권기훈;이교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.175-176
    • /
    • 2018
  • This paper presents a method to estimate the parameter of permanent magnet synchronous motor using a least squares method. The approximate solution of the linear simultaneous equations is obtained by the pseudoinverse least squares method of the input current and output voltage data of the current controller. It is possible to obtain the current response of the same bandwidth to the general control target by using the Pole-zero Cancellation technique. This paper verifies the performance of the proposed method by comparing the results of estimation of parameters of different motors by simulation.

  • PDF

BLOCK DIAGONAL PRECONDITIONERS FOR THE GALERKIN LEAST SQUARES METHOD IN LINEAR ELASTICITY

  • Yoo, Jae-Chil
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.143-153
    • /
    • 2000
  • In [8], Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we propose the block diagonal preconditioners. The preconditioned conjugate residual method is robust in that the convergence is uniform as the parameter, v, goes to $\sfrac{1}{2}$. Computational experiments are included.

  • PDF

A Method of Obtaning Least Squares Estimators of Estimable Functions in Classification Linear Models

  • Kim, Byung-Hwee;Chang, In-Hong;Dong, Kyung-Hwa
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.183-193
    • /
    • 1999
  • In the problem of estimating estimable functions in classification linear models, we propose a method of obtaining least squares estimators of estimable functions. This method is based on the hierarchical Bayesian approach for estimating a vector of unknown parameters. Also, we verify that estimators obtained by our method are identical to least squares estimators of estimable functions obtained by using either generalized inverses or full rank reparametrization of the models. Some examples are given which illustrate our results.

  • PDF