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BLOCK DIAGONAL PRECONDITIONERS
FOR THE GALERKIN LEAST SQUARES METHOD
IN LINEAR ELASTICITY

JAECHIL YOO

ABSTRACT. In [8], Franca and Stenberg developed several Galerkin
least squares methods for the solution of the problem of linear elas-
ticity. That work concerned itself only with the error estimates of
the method. It did not address the related problem of finding effec-
tive methods for the solution of the associated linear systems. In this
work, we propose the block diagonal preconditioners. The precondi-
tioned conjugate residual method is robust in that the convergence is
uniform as the parameter, v, goes to % Computational experiments
are included.

1. Introduction

Let © be a bounded convex polygonal domain in R? and 69 be the
boundary of 2. The pure displacement boundary value problem for planar
linear elasticity is given in the form

14
(1) 20V -(u) + 75
u=90 on0Q.

VV.ul+f=0 inQ,

Here u = (uy,u3) denotes the displacement, f = (f1, f;) is the body force,

v is Poisson’s ratio and u is the shear modulus given by u = E/{2(1 +
v)} where E is the Young’s modulus. Instead of using Poisson’s ratio
v and Young’s elasticity modulus E, we can also work with the Lame
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constants A and p. These constants are related to each other by the
following equations;

Ev A

/\:(14-11)(1—21/)’ V:2(/\+,u)’
_FE _u(BA+2p)
P=oaywy 7 awp

We restrict Poisson’s ratio to 0 < v < 1/2 where the upper limit corre-
sponds to an incompressible material.

We use undertildes to denote vector-valued functions, operators and
their associated spaces, and double undertildes are used for matrix-valued
functions and operators.

We define various standard differential operators as follows (see [6]):

s =

_ 6'01 8’02
V. v= B—x + 8—y-,
V.7 = (67'1]/81' +8T12/3y>, YU: <8v1/8x 801/8y>,

87’21/81‘ +8’r22/3y

2

Ove [0z Ove /Oy

Znﬂhj, and g(v) = % [YUJF(Y ,U)t] .

1 j=1

\]

rin=

k2

Let H™(Q) denote the usual Sobolev space of functions with L?(2) deriva-
tives up to order m. H™(Q) is equipped with the norm

ol = /ﬂ S jool dady

lat<m

L
2

We use the following convention for the Sobolev seminorms (see [1]):

[V|m = / |0%v|* dzdy
e !al2=;n
Let H'(Q) = {v e H™(Q) : v|sq = 0}.
The pure displacement problem (1) can be formulated as a saddle point
problem and discretized by the Galerkin least squares methods. This

1

2
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discretization gives rise to symmetric indefinite linear systems of equations

of the form
A B\ [u f
=" Az = 0.
(2 ) () - (2) -

Here the submatrix A is symmetric and positive definite and C is a sym-
metric and positive definite matrix. For such indefinite systems, the con-
jugate gradient method is generally inapplicable, however, the precondi-
tioned conjugate residual method(PCR) can be used (see [3]).

In recent years, several iterative methods have been developed to solve
such problems. The oldest algorithm is known as the Uzawa algorithm,
see [2]. It is mainly a gradient algorithm applied to the Schur compli-
ment of C + BA™! B! of the indefinite linear system. When this algorithm
is applied, we have to solve a linear system of the form Aw = d. The
Uzawa algorithm is quite expensive since A normally is not well condi-
tioned. Therefore, many authors have considered an inner iteration for
A1, see [4] and [7]. Other authors have considered the use of symmetric
positive definite block diagonal preconditioners for the indefinite algebraic
system to avoid inner and outer iterations, see [11], [12] and [13]. In [13],
Sylvester and Wathen developed a simple diagonal preconditioner for a
saddle point problem arising from stabilized and unstabilized Stokes flow.
They derived estimates of the eigenvalue spectrum of Stokes operator on
which the convergence rate of the iteration depends and provides a good
criterion for choosing stabilizing parameter « to ensure fast convergence
of the iterative method. In [10], Klawonn introduced an optimal precondi-
tioner for a saddle point problem with a penalty term and showed that the
condition number of the preconditioned system is bounded independently
of the finite element discretization and the penalty parameter. In this
paper, we apply the block diagonal preconditioner proposed by Klawonn
to a saddle point problem arising from stabilized linear elasticity problem.
We can use any combinations of finite element spaces for approximating
the displacement and pressure, however, Klawonn’s approach is restricted
to certain finite element spaces. In section 4, we provide numerical results
which show that the convergence rate of the preconditioned conjugate
residual methods is independent of the mesh size h and Poisson’s ratio v.

This paper is organized as follows. In section 2, we describe the al-
gebraic form of the problem, the block diagonal preconditioners and the
finite element theory thereof. In section 3, we explain the preconditioned
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conjugate residual(PCR) method as an example a Krylov space method
for indefinite linear systems. In section 4, we give the computational re-
sults for our problem.

2. Algebraic Form of the Problem

In this section, we give the algebraic form of the problem and present
the block diagonal preconditioners for the problem. We state the theorem
of the condition number estimate of the preconditioned system without
proof.

For simplicity, we assume that 2y = 1. Let p = —%V - u, where € =

(1 —2v)/v. Then (1) is equivalent to

@) ~V-ew)+Vp=7 inQ,
ep+V-u=0 inQ,
u=0 on Jf.

Hence, we have the following weak formulation:
Find (u,p) € H{(Q) x L*(Q) such that

(3) /Qg(u) 1 €(v) dzdy ~ /Q(V : y)p dzdy = /Qf'u dzdy,
Vu e Hy(®),

e/pq dzdy + / (V . y)q dedy =0, Vge L*Q).
Q Q

Let T* be a family of triangulations of 2, where 7%+ is obtained by con-
necting the midpoints of the edges of the triangles in 7*. Let hy =diam(T)
foreach T € T* and hy = rTnz;gk('hT. Then h; = 2h;1. Now let’s define the

cTk

conforming finite element spaces.

Vi = {ve C‘O(Q) ; vlr is linear for all T' € T* and vlsn =0} and
P, = {qeC%Q); gl is linear for all T € T*}.
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Then the discretized Galerkin least squares method for (3) is the following:
Find (yk,pk) € Vi X P such that

(4) By ((@{mpk), (vx, (Ik)) = F ¢(vr, q) V(vk, qx) € Vi X B
where

B ((yk,Pk): (%, Qk))

= /ng(yk) L e(ux) dody — /Q<V : yk)Qk dzdy — /(;(V : yk)Pk dzdy
~a 0 [ (=9 )+ V) - (- Vel + Vo) ey

TeTk

—€ / Peqr dzdy
Q

and

Filona) = [ £ dudy=a 3 b [ 7(=V-clo) + Vo) dody
/ f 1

TeT*

Note that the bilinear form By is symmetric and indefinite.
Introducing the piecewise linear nodal basis functions {¢;} and {¢;}

for Vi and P, respectively, the discrete problem (4) can be written in

(55 (0)- 0) e

where A = (a;), B = (b;), C = (cj) and [ = (f;).

matrix form as
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Here a;j, b;;, c;; and f; are given by the following:

a; = /Qg(?f)ig(ﬁef) dzdy,

by = — /Q (V- )k dady,

Gj = ¢ / Yok dody + o > K / (Vo) - (V) dedy and
f TeT* T

ho= [1ddsty—a X 1 [ 1(vF) deay
e 2. )

By [8], we guarantee the existence of the solution for the problem (4) by
the well-known theory of Babugka (see [5}).
Let us consider the preconditioner of the problem Az = b, where

A B!
a=(3 %)

Note that if we choose a = € in C, then A can be written in the form of

_ (A Bt
A, = (B —eC*) )

We choose the positive definite block diagonal preconditioner

s (A0
B - (0 C*)

where A is defined by the multigrid method with a V-cycle including
symmetric Gauss-Seidel smoothing and C, by the diagonal of C.
Since ||pll§ < Xrers P7IVPellir + [1pell3

< C|lpxl|2 + |lpk||3 (by the shape regularity)

<(C+D)lpslls, Vpx € By,
C. is spectrally equivalent to the pressure mass matrix M,. And we know
that A and C, are good preconditioners for A and C, respectively:

(¢) Jag, a; > 0 such that ag u}cfluk < ychyk < af yfcflyk, YV, € Vi,

(73) Jcg, €1 > 0 such that cg pf,cé*pk < pfchpk <l pfcé'*pk, Vpi € Py.
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In this case, Klawonn estimates the condition number x(B;1.A.) (see [10)).
Let

- abs . 1
I{(B_lA) i )\rrzaz - max{])\l LA € U(? A)}’
Apgn min{[|: X € o(B-1A)}
where o(B371.A) denotes the spectrum of B! A.
Now we can state the theorem which is in {10].

THEOREM 1.

3 2 2y 1/2+ /6 + 1
w(BLAL) = max{a?, c*} 17T g

where (3 is the inf-sup constant of the method and 3, is the continuity
constant of B.

This theorem says that the condition number x(B;1A,) is completely
determined by the preconditioners A, C,, the condition number of BA™!Bt.
We also note-that the result is independent of the discretization and the
constants €, &. Thus we can guarantee that the convergence rate of the
Krylov space method will not deteriorate when h, € and a decrease.

3. PCR Method

The PCR(preconditioned conjugate residual) method is an algorithm
to solve Az = b with a symmetric indefinite matrix .4 and a positive
definite preconditioner 3. We will state a stable version that is based on
a 3 term recurrence. See [3].

ALGORITHM 1.

Initialization :
Ty = b— Az
p-1 = 0
po = B'rg
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Iteration : )
A= ———Tanlepm
P AB~ App,
Tmil = Ty + APm
Tmil = Tm — AAPn
- pﬁnAB_ILAB"lApm
P AB~ Apr,
- P AB ' AB~ Ap,
Pt AB~ ' Apy_y
Pmt1 = B ' Apm — aopm — a1pm-1.

REMARK 1. If we assume that A is an optimal positive definite pre-
conditioner but choose B := cA,c € R*, then A will grow in proportional
to ¢ (™*1)_ This can easily be seen by induction. The easiest way of fixing
this phenomenon is to normalize p,,,; in every iteration. We have done
so in our implementation.

We state the next theorem which can be found in [9].

THEOREM 2. Let the regular matrix A be symmetric and B be positive
definite. Then the m-th iterate of Algorithm 1 satisfies

2cH

14

1B=2A(2™ — 2)||2 < 1B72(Az® = )]l

where ¢ = :—j, K= K,(B—IA) and % —l<pu< %, Yue Z.

This theorem says that the convergence rate of the PCR-method is deter-
mined by the condition number of the preconditioned system.

4. Experimental Results

We apply our preconditioner to the pure displacement boundary value
problem (2). The domain  is the unit square, and the body force f =
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(f1, f2) is taken to be as follows:

fi = m*[2sin27my(—1+ 2cos2mz) — 0.5cosm(z +y) +

€ . .
sSin Tx sin T
3 Y]
€

€+ 2

fo = w?[2sin27z(1 — 2cos 2wy) — 0.5cos w(z + y) + sin 7z sin 7y).

The initial iterate is 0, and the program executes until ||r¢||2/||7o|]2 is less

than 107%, where 7} is the k—th residual. The computations were done in
double-precision arithmetic. We choose our preconditioners A and C for
A and C with a V-cycle multigrid including one symmetric Gauss-Seidel
smoothing and a simple diagonal preconditioner, respectively.

First, we show the numerical experiments with the case of @ = € and
C =diag (C,). See Table 1. In this case, Klawonn gives condition num-
ber estimates for the preconditioned system and some numerical experi-
ments for the linear system arising from the saddle point problem with
the penalty term (see [10]). In [10], Klawonn uses the Taylor-Hood finite
element spaces which satisfy the Babuska-Brezzi condition to approximate
the velocity and the pressure. In Table 1, we show that the convergence
rate of the preconditioned conjugate residual method is independent of the
mesh size h for the moderate numbers of Poisson’s ratio v, for example, v
= 0.35, 0.4, 0.45, 0.495, 0.4995. We note that the convergence rate of the
preconditioned conjugate residual method is also independent of Poisson’s
ratio v. In [10], Klawonn gives the iteration numbers as h decreases only
for the case of v = 0.3.

Next, we give the numerical experiments with the case of o # ¢ and
C =diag (C). See Table 2, 3 and 4. In this case, we tested our precondi-
tioned linear system with the various Poisson’s ratio v and the mesh size
h. We observe that the convergence rate of the preconditioned conjugate
residual method is independent of the mesh size h and Poisson’s ratio v.
We show that the preconditioned conjugate residual method is an efficient
and robust iterative solver for the pure displacement boundary problem
with the least squares term.
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[ [ N=i6]  N=32] N=6d]
v=0.35 30 34 36
r=0.40 28 31 35
v=0.45 22 25 28
r=0.495 23 24 25

r=0.4995 50 57 56

TABLE 1. Caseof @ = ¢

[ v] 03] 0.45] 0.495]0.4995]0.49995 | 0.499995 | 0.4999995 |
a=10] 28] 39| 43| 43 43 43 43
a=05] 23] 33| 39| 39 39 39 39
a=0.1]| 14| 25| 30| 30 30 30 30
a=005] 17| 22| 28] 30 30 30 30
a=001 21| 30| 41| 42 42 42 42

TABLE 2. Caseof @ #¢, N =16, 1e., h =1/16

[ v] 03] 0.45] 0.495]0.4995]0.49995 | 0.499995 | 0.4999995 |
a=10] 33| 50| 54| 57 57 57 57
a=05] 26| 40| 46| 47 a7 a7 47
a=01| 15| 28] 35| 36 36 36 36
a=005] 16] 25| 32| 34 34 34 34
a=001| 23| 34| 44| 45 45 45 45

TABLE 3. Caseof a #¢, N =32,ie,h =1/32

[ v] 03] 0.45] 0.495]0.4995]0.49995 | 0.499995 | 0.4999995 |
a=10] 34] 55| 62] 65 65 65 65
a=05| 2| 45| 51| 54 54 54 54
a=01] 15| 30| 38] 38 R R 38

a=005] 18] 25| 35| 36 36 36 36
a=001] 23| 34| 45| 47 17 a7 47

TABLE 4. Caseof « #¢, N =64, ie, h = 1/64
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