• Title/Summary/Keyword: Method of Adjustment

Search Result 1,495, Processing Time 0.027 seconds

Adjustment of Radar Precipitation Estimation Based on the Local Gauge Correction Method (국지 우량계 보정 방법을 이용한 레이더 강우 조정)

  • Kim, Kwang-Ho;Lee, Gyuwon;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Han, Kun-Yeun
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.115-130
    • /
    • 2014
  • The growing possibility of the disaster due to severe weather calls for disaster prevention and water management measures in South Korea. In order to prevent a localized heavy rain from occurring, the rainfall must be observed and predicted quantitatively. In this study, we developed an adjustment algorithm to estimate the radar precipitation applying to the local gauge correction (LGC) method which uses geostatistical effective radius of errors of the radar precipitation. The effective radius was determined from the errors of radar rainfall using geostatistical method, and we adjusted radar precipitation for four heavy rainfall events based on the LGC method. Errors were decreased by about 40% and 60% in adjusted hourly rainfall accumulation and adjusted total rainfall accumulation for four heavy rainfall events, respectively. To estimate radar precipitation for localized heavy rain events in summer, therefore, we believe that it was appropriate for this study to use an adjustment algorithm, developed herein.

Causal effect of urban parks on children's happiness (도시공원 면적이 유아 행복감에 미치는 영향에 대한 인과관계 연구)

  • Nayeon Kwon;Chanmin Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.63-83
    • /
    • 2023
  • Many existing studies have found significant correlations between green spaces, including urban parks, and children's happiness. Furthermore, it was implied that the area/proximity of the urban park would be effective in enhancing infancy happiness. However, inferring causal effects from observed data requires appropriate adjustment of confounding variables, and from this perspective, the causal relationship between the area of urban parks and children's happiness has not been well understood. The causal effect of urban parks on children's happiness was estimated in this study using data from the panel study on Korean children. As methods for adjusting confounding variables, regression adjustment using a regression method, weighting method, and matching method were used, and key concepts of each method were described before the analysis results. Confounders were chosen for the analysis using a directed acyclic graph. In contrast to previous research, the analysis found no significant causal relationship between the size of the city park and children's happiness.

Comparison of Match Candidate Pair Constitution Methods for UAV Images Without Orientation Parameters (표정요소 없는 다중 UAV영상의 대응점 추출 후보군 구성방법 비교)

  • Jung, Jongwon;Kim, Taejung;Kim, Jaein;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.647-656
    • /
    • 2016
  • Growth of UAV technology leads to expansion of UAV image applications. Many UAV image-based applications use a method called incremental bundle adjustment. However, incremental bundle adjustment produces large computation overhead because it attempts feature matching from all image pairs. For efficient feature matching process we have to confine matching only for overlapping pairs using exterior orientation parameters. When exterior orientation parameters are not available, we cannot determine overlapping pairs. We need another methods for feature matching candidate constitution. In this paper we compare matching candidate constitution methods without exterior orientation parameters, including partial feature matching, Bag-of-keypoints, image intensity method. We use the overlapping pair determination method based on exterior orientation parameter as reference. Experiment results showed the partial feature matching method in the one with best efficiency.

A Comparative Study of College Adjustment and Life Stress of Nursing Students by Grades (간호대학생의 학년에 따른 대학적응과 생활 스트레스 비교연구)

  • Jung, So Young
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2019
  • This study was done to compare college adjustment and life stress of nursing students by grades in Korea. A total of 417 participants were recruited using a convenient sampling method. Data were collected using a self-reported questionnaire from October 15 to October 30, 2019. The results of the study showed that the college adjustment of nursing students was significantly higher in 4th grade (3.45 ± 0.53) than 1st grade (3.18 ± 0.61). Life stress was highest in first grade (0.91 ± 0.46), followed by fourth grade, second grade, and third grade. college adaptation and life stress by grade were inversely correlated in all grades. Therefore, it is necessary to check the difference between college adaptation and life stress according to grade level, and to prepare customized programs according to the grades, so that students can make a good college adjustment through stress management of nursing college students.

Active Adjustment: An Approach for Improving the Search Performance of the TPR*-tree (능동적 재조정: TPR*-트리의 검색 성능 개선 방안)

  • Kim, Sang-Wook;Jang, Min-Hee;Lim, Sung-Chae
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.451-462
    • /
    • 2008
  • Recently, with the advent of applications using locations of moving objects, it becomes crucial to develop efficient index schemes for spatio-temporal databases. The $TPR^*$-tree is most popularly accepted as an index structure for processing future-time queries. In the $TPR^*$-tree, the future locations of moving objects are predicted based on the CBR(Conservative Bounding Rectangle). Since the areas predicted from CBRs tend to grow rapidly over time, CBRs thus enlarged lead to serious performance degradation in query processing. Against the problem, we propose a new method to adjust CBRs to be tight, thereby improving the performance of query processing. Our method examines whether the adjustment of a CBR is necessary when accessing a leaf node for processing a user query. Thus, it does not incur extra disk I/Os in this examination. Also, in order to make a correct decision, we devise a cost model that considers both the I/O overhead for the CBR adjustment and the performance gain in the future-time owing to the CBR adjustment. With the cost model, we can prevent unusual expansions of BRs even when updates on nodes are infrequent and also avoid unnecessary execution of the CBR adjustment. For performance evaluation, we conducted a variety of experiments. The results show that our method improves the performance of the original $TPR^*$-tree significantly.

LCCA-embedded Monte Carlo Approach for Modeling Pay Adjustment at the State DOTs (도로공사에서 생애주기비용을 사용한 지급조정모델 개발에 관한 연구)

  • Choi Jae-ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.72-77
    • /
    • 2002
  • The development of a Pay Adjustment (PA) procedure for implementing Performance-related Specifications (PRS) is known to be a difficult task faced by most State Highway Agencies (SHAs) due to the difficulty in such areas as selecting pay factor items, modeling the relationship between stochastic variability of pay factor items and pavement performance, and determining an overall lot pay adjustment. This led to the need for an effective way of developing a scientific pay adjustment procedure by incorporating Life Cycle Cost Analysis (LCCA) embedded Monte Carlo approach. In this work, we propose a prototype system to determine a PA specifically using the data in the pavement management information systems at Wisconsin Department of Transportation (WisDOT) as an exemplary to other SHAs. It is believed that the PRS methodology demonstrated in this study can be used in real projects by incorporating the more accurate and reliable performance prediction models and LCC model.

  • PDF

A Study on Correction Approach for the Life Safety Index for Personalized Services Based on User Profiles (생활안전 예방서비스 사용자 프로파일 기반 맞춤형 서비스를 위한 생활안전지수 보정 방안 연구)

  • Hyesu Oh;JongWoon Jeong;Jaeil Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • This study introduces a study on the adjustment methods of the Life Safety Index. The Life Safety Index is a service provided by the Life Safety Prevention Service System. It comprehensively evaluates individuals' levels of safety in their daily lives, continually monitors their safety status, and presents a comprehensive index to prevent safety accidents in advance. Previous studies have developed the Life Safety Index using evaluation criteria (items) for assessing life safety prevention services, incorporating both the AHP (Analytic Hierarchy Process) and Likert Scale techniques. In this study, we build upon this existing Life Safety Index and explore methods for applying adjustment factors based on individuals' characteristics to enhance its accuracy and customization. We develop adjustment factors using existing national statistics to provide personalized services tailored to individual profiles. Therefore, this paper proposes a method for providing customized services by applying adjustment factors to the Life Safety Index, contributing to the development and application of life safety index adjustment methodologies.

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Difficulty Control of a Scrolling-Shooter Game Using Fuzzy Reasoning (퍼지이론을 이용한 슈팅게임 난이도 조절)

  • Park, Chang Hoon;Seo, Jinseok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1464-1471
    • /
    • 2017
  • One of the important factors in game design is difficulty adjustment. An appropriate level of difficulty makes users have a sense of challenge and interest. However, the adjustment of difficulty takes a lot of time and effort, because of its ambiguity. To solve the problem, we propose a difficulty control method using a fuzzy theory. In this paper, a simple demonstration is exemplified to verify the effectiveness of our method. Experimental results show that the difficulty of the game changes according to the user's skill.

Adjustment of initial learning order to improve clustering performance of ART1 (ART1 클러스터링 성능 향상을 위한 초기 학습순서 조정)

  • Choi, Tae-Hun;Lim, Sung-Kil;Lee, Hyon-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.675-676
    • /
    • 2008
  • This paper presents adjustment of input order to improve clustering performance of ART1. We propose new method for On-line clustering which adjusts initial input data using buffer. We demonstrate the clustering performance of the proposed algorithm by testing it on Zoo data set from UCI and created artificial data set for simulation. Experimental results show that preposed method increases 7.8% of clustering performance than ART1 model on the average.

  • PDF