• Title/Summary/Keyword: Methicillin-resistant staphylococcus aureus

Search Result 408, Processing Time 0.032 seconds

Molecular Characteristics and Exotoxins of Methicillin-Resistant Staphylococcus aureus

  • Bae, Jinyoung;Jin, Hyunwoo;Kim, Jungho;Park, Min;Lee, Jiyoung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.195-207
    • /
    • 2021
  • Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen capable of causing human diseases, such as soft tissue infection, bacteremia, endocarditis, toxic shock syndrome, pneumonia, and sepsis. Although the incidence rate of diseases caused by MRSA has declined in recent years, these diseases still pose a clinical threat due to their consistently high morbidity and mortality rates. However, the role of virulence factors in staphylococcal infections remains incompletely understood. Methicillin resistance, which confers resistance to all β-lactam antibiotics in cellular islets, is mediated by the mecA gene in the staphylococcal cassette chromosome mec (SCCmec). Differences in SCCmec types and differences in their sizes and structures serve epidemiological purposes and are used to differentiate between hospital-associated (HA)-MRSA and community-associated (CA)-MRSA. Some virulence factors of S. aureus are also providing a distinction between HA-MRSA and CA-MRSA. These factors vary depending on the presence of toxins, adhesion, immune evasion, and other virulence determinants. In this review, we summarized an overview of MRSA such as resistance mechanisms, SCCmec types, HA- and CA-MRSA, and virulence factors that enhance pathogenicity or MRSA epidemiology, transmission, and genetic diversity.

Isolation Rate of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal cavity inferior regions and Cellular phones

  • Kim, Chung Hwan;Lee, Jun Young;Kim, Mi Kyeong;Kim, Sung Hwan;Park, Geun Young;Bae, So Yeon;Seo, Myeong Jin;Go, In Hyeog
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.118-123
    • /
    • 2012
  • Nosocomial infection and community-acquired infection with Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has become a strong concern in human body sites and related effects. The aim of this study is investigate the isolation rate of MRSA from nasal cavity inferior regions and cellular phones to assess the risk factor of nosocomial infection and community-acquired infection. 34.7% and 37.2% isolates were MRSA from the nasal cavity inferior regions and cellular phones according to a Mannitol salt agar (added oxacillin $6{\mu}g/mL$) culture and PCR according to S. aureus specific 16S rRNA and mecA primers. Thus, the distribution of S. aureus and the isolation rate of MRSA represent a very high risk factor regards nosocomial infection and community-acquired infection.

  • PDF

In Vitro Activity of Taurine-5-Bromosalicylaldehyde Schiff Base Against Planktonic and Biofilm Cultures of Methicillin-Resistant Staphylococcus aureus

  • Yuan, Ruqiang;Diao, Yunpeng;Zhang, Wenli;Lin, Yuan;Huang, Shanshan;Zhang, Houli;Ma, Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1059-1064
    • /
    • 2014
  • Staphylococcus aureus is a major human pathogen, implicated in both community and hospital acquired infections. The therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult because of multidrug resistance and strong biofilm-forming properties. Schiff bases have attracted attention as promising antibacterial agents. In this study, we investigated the in vitro activity of taurine-5-bromosalicylaldehyde Schiff base (TBSSB) against MRSA. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) were determined using a microtiter broth dilution method. TBSSB effectively inhibited planktonic MRSA, with an MIC of $32{\mu}g/ml$. The time-kill curve confirmed that TBSSB exhibited bactericidal activity against MRSA. TBSSB was also found to significantly inhibit MRSA biofilm formation at 24 h, especially at $1{\times}MIC$ and sub-MIC levels. Furthermore, scanning electron microscopy and transmission electron microscopy showed remarkable morphological and ultrastructural changes on the MRSA cell surface, due to exposure to TBSSB. This study indicated that TBSSB may be an effective bactericidal agent against MRSA.

Antibacterial Effect of Sohamhyung-tang Against Methicillin-Resistant Staphylococcus aureus (소함흉탕(小陷胸湯)의 Methicillin 내성 Staphylococcus aureus에 대한 항균활성 연구)

  • Yum, Dae Yul;Baek, Dong Ki;Song, Yung Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.886-893
    • /
    • 2012
  • Methicillin-Resistant Staphylococcus aureus (MRSA) is a cephalosporin and beta-lactam antibiotic-resistant strain. In most cases, MRSA is spread from infected patients and infection rates are growing increasingly. Furthermore, increased resistance to antibiotics is causing serious problems in the world. Staphylococcus aureus is responsible for both nosocomial and community-based infections that range from relatively minor skin and soft tissue infections to life-threatening systemic infections. Therefore, there is a need to develop alternative antimicrobial drugs for the treatment of infectious diseases. In this study, we investigated antimicrobial activity of oriental medicine prescription against MRSA. The minimum inhibitory concentration (MIC) of Sohamhyung-tang water extract against S. aureus strains ranged from 500 to 2,000 ${\mu}g/mL$, so we have it confirmed that a strong antibacterial effect. Also, the combinations of Sohamhyung-tang water extract and conventional antibiotics exhibited improved inhibition of MRSA with synergy effect. We suggest that Sohamhyung-tang water extract against MRSA have antibacterial activity, it has potential as alternatives to antibiotic agent. We suggest that the Sohamhyung-tang water extract lead the treatment of bacterial infection to solve the resistance and remaining side-effect problems that are the major weak points of traditional antibiotics.

Prevalence and Characteristics of Antimicrobial-Resistant Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus from Retail Meat in Korea

  • Kim, Yong Hoon;Kim, Han Sol;Kim, Seokhwan;Kim, Migyeong;Kwak, Hyo Sun
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.758-771
    • /
    • 2020
  • This study was to investigate the prevalence and characteristics of antimicrobial-resistant Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from 4,264 retail meat samples including beef, pork, and chicken in Korea between 2013 and 2018. A broth microdilution antimicrobial susceptibility testing was performed for S. aureus. Molecular typing by multilocus sequence typing (MLST), spa typing, and pulsed-field gel electrophoresis (PFGE), was performed on mecA-positive S. aureus strain. S. aureus was isolated at a rate of 18.2% (777/4,264), of which MRSA comprised 0.7% (29 strains). MLST analysis showed that 11 out of the 29 MRSA isolates were predominantly sequence type (ST) 398 (37.9%). In addition, ST72, ST692, ST188, ST9, and ST630 were identified in the MRSA isolates. The spa typing results were classified into 11 types and showed a high correlation with MLST. The antimicrobial resistance assays revealed that MRSA showed 100% resistance to cefoxitin and penicillin. In addition, resistance to tetracycline (62.1%), clindamycin (55.2%), and erythromycin (55.2%) was relatively high; 27 of the 29 MRSA isolates exhibited multidrug resistance. PFGE analysis of the 18 strains excluding the 11 ST398 strains exhibited a maximum of 100% homology and a minimum of 64.0% homology. Among these, three pairs of isolates showed 100% homology in PFGE; these results were consistent with the MLST and spa typing results. Identification of MRSA at the final consumption stage has potential risks, suggesting that continuous monitoring of retail meat products is required.

Screening of Antimicrobial Activity from the Marine-Derived Fungus (해양균류의 항균활성 검색)

  • Li, Yong;Li, Xifeng;Choi, Hong-Dae;Son, Byeng-Wha
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.2 s.133
    • /
    • pp.142-144
    • /
    • 2003
  • Acetone extracts of 301 strains of marine-derived fungus were tested for antimicrobial activity against three strains of bacteria. The bacteria consisted of three pathogens, Staphylococcus aureus, methicillin-resistant S. Aureus, and multidrug-resistant S. aureus. The acetone extracts of 10 strains (MFA117, MFA130, MFA134, MFA206, MFA217, MFA268, MFA277, MFA291, MFA292, MFA301) showed strong activity, inhibiting 100% of the bacterial growth. These antimicrobial active strains were cultlued in SWS medium on a 1 L scale and the resulting broth and mycelium were extracted to afford mycelium extract (000M) and broth extract (000B), respectively. Antimicrobial activity for all extracts has been tested as the results, the mycelium extract of one strain (217M) and the broth extracts of 9 strains (117B,130B, 134B, 206B, 268B, 277B, 291B, 292B, 301B) exhibited relatively high levels of activity at minimal inhibitory concentration (MIC) values of $500-125\;{\mu}g/mL$ range. Among them, the extracts, 277B, 291B, 292B and 301B showed the most significant antimicrobial activity with $IC_{50}$ values of $125\;{\mu}g/mL$.

Flavonoid Inhibitors of β-Ketoacyl Acyl Carrier Protein Synthase III against Methicillin-Resistant Staphylococcus aureus

  • Lee, Jee-Young;Lee, Ju-Ho;Jeong, Ki-Woong;Lee, Eun-Jung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2695-2699
    • /
    • 2011
  • ${\beta}$ Ketoacyl acyl carrier protein synthase III (KAS III) initiates fatty acid synthesis in bacteria and is a key target enzyme to overcome the antibiotic resistance problem. In our previous study, we found flavonoid inhibitors of Enterococcus faecalis KAS III and proposed three potent antimicrobial flavonoids against Enterococcus faecalis and Vancomycin-resistant Enterococcus faecalis with MIC values in the range of 128-512 ${\mu}g/mL$ as well as high binding affinities on the order from $10^6$ to $10^7\;M^{-1}$. Using these series of flavonoids, we conducted biological assays as well as docking study to find potent flavonoids inhibitors of Staphylococcus aureus KAS III with specificities against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Here, we propose that naringenin (5,7,4'-trihydroxyflavanone) and eriodictyol (5,7,3',4'-tetrahydroxyflavanone) are potent antimicrobial inhibitors of Staphylococcus aureus KAS III with binding affinity of $3.35{\times}10^5$ and $2.01{\times}10^5\;M^{-1}$, respectively. Since Arg38 in efKAS III is replaced with Met36 in saKAS III, this key difference caused one hydrogen bond missing in saKAS III compared with efKAS III, resulting in slight discrepancy in their binding interactions as well as decrease in binding affinities. 4'-OH and 7-OH of these flavonoids participated in hydrogen bonding interactions with backbone carbonyl of Phe298 and Ser152, respectively. In particular, these flavonoids display potent antimicrobial activities against various MRSA strains in the range of 64 to 128 ${\mu}M$ with good binding affinities.

Clinical Manifestation and Treatment of Methicillin-resistant Staphylococcus aureus Infections in Children (소아 메티실린내성 황색포도알균 감염증의 임상양상과 치료)

  • Choi, Eun Hwa
    • Pediatric Infection and Vaccine
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Methicillin-resistant Staphylococcus aureus (MRSA), a leading cause of nosocomial infections, has been increasingly recognized in communities of the United States. This article will review the clinical spectrum and treatment of MRSA infections in children in the context of recent epidemiological changes of MRSA infections. In general, community-associated (CA) MRSA most frequently causes skin and soft tissue infections and has an increased association with invasive infections, particularly pneumonia and musculoskeletal infections. Hospital-associated (HA) MRSA strains tend to be associated with bloodstream infections, pneumonia, and surgical site infections. Different from the United States, CA-MRSA infections are not common in Korea (only 5.9%); however, there are some CA-MRSA clones that are different from HA-MRSA clones in Korea and from CA-MRSA clones in other countries. The treatment of MRSA infections should be guided by antimicrobial susceptibility testing, the site of infection, and the infection severity. Vancomycin is the treatment of choice for invasive MRSA infections. Other agents such as trimethoprim-sulfamethoxazole, clindamycin, linezolid, quinupristin-dalfopristin, and daptomycin have been used for some conditions.

  • PDF

Antibiotic Resistance Patterns of Staphylococcus aureus and Methicillin Resistant S. aureus Isolated from the Specimen of Elementary School Students

  • Kim Tae-Un;Kim Dae-Hyun;Kim Yun-Tae
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.525-531
    • /
    • 2005
  • Staphylococcus aureus is a major cause of nosocomial infections and is one of the most commonly isolated bacterial species in the hospital and continues to be an important pathogen in both community and hospital-acquired infection. Methicillin resistant S. aureus (MRSA), which is associated with hospitals is now being isolated in the community. The purpose of this study is to investigate the carrier rate of S. aureus in the community, antibiotic resistance patterns of the organism, detection of MRSA and mecA gene in MRSA. Ninety strains $(46.4\%)$ of S. aureus were isolated from the nasal specimens of 194 elementary school students. Eighty-nine strains $(98.9\%)$ of 90 S. aureus were resistant to penicilin, 36 strains $(40.0\%)$ to erythromycin, 14 strains $(15.6\%)$ to fusidic acid, 11 strains $(12.2\%)$ to gentamycin, 9 strains $(10.0\%)$ to tobramycin, 5 strains $(5.6\%)$ to oxacillin, 4 strains $(4.4\%)$ to clindamycin, 2 strains $(2.2\%)$ to tetracycline, 1 strains $(1.1\%)$ to fosfomycin. None of $90(0\%)$ S. aureus isolates was resistant to ciprpfloxacin, trimethoprim/sulfamethoxazole, levofloxacin, linezolid, moxifloxacin, nitrofurantoin, norfloxacin, rifampicin, quinupristin/dalfopristin, teicoplanin, and vancomycin. Five strains $(5.6\%)$ of 90 S. aureus isolates were MRSA. The mecA gene was detected from five MRSA strains by PCR.

  • PDF