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Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen capable of causing human diseases, such 

as soft tissue infection, bacteremia, endocarditis, toxic shock syndrome, pneumonia, and sepsis. Although the incidence 

rate of diseases caused by MRSA has declined in recent years, these diseases still pose a clinical threat due to their 

consistently high morbidity and mortality rates. However, the role of virulence factors in staphylococcal infections remains 

incompletely understood. Methicillin resistance, which confers resistance to all β-lactam antibiotics in cellular islets, is 

mediated by the mecA gene in the staphylococcal cassette chromosome mec (SCCmec). Differences in SCCmec types 

and differences in their sizes and structures serve epidemiological purposes and are used to differentiate between 

hospital-associated (HA)-MRSA and community-associated (CA)-MRSA. Some virulence factors of S. aureus are also 

providing a distinction between HA-MRSA and CA-MRSA. These factors vary depending on the presence of toxins, 

adhesion, immune evasion, and other virulence determinants. In this review, we summarized an overview of MRSA 

such as resistance mechanisms, SCCmec types, HA- and CA-MRSA, and virulence factors that enhance pathogenicity 

or MRSA epidemiology, transmission, and genetic diversity. 
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INTRODUCTION 

 

Staphylococcus aureus is a major bacterial pathogen that 

causes a range of infectious diseases in humans, including 

skin infections, bacteremia, endocarditis, toxic shock syn- 

drome (TSS), pneumonia, and sepsis (Tong et al., 2015). 

Although S. aureus is usually a commensal bacterium, it can 

cause infection in immunocompromised patients or during 

surgery with invasive medical devices (Anderson et al., 
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2012; Moran et al., 2012; Nimmo, 2012; Tong et al., 2012). 

There are many kinds of antibiotics that target key 

bacterial processes, such as cell wall synthesis, translation, 

transcription, and DNA synthesis, and that can be used to 

treat staphylococcal infections (Samanta and Elasri, 2014; 

Assis et al., 2017; G et al., 2019). Methicillin-resistant S. 

aureus (MRSA) attracted global attention in the 1960s 

(Benner and Kayser, 1968; Chambers and Deleo, 2009; Melo 

et al., 2017; Fri et al., 2020), and its antibiotic resistance 

occurs via several mechanisms. Currently, MRSA has spread 

globally, and its prevalence has increased both in hospital-

associated MRSA (HA-MRSA) and community-associated 

MRSA (CA-MRSA) (Saiman et al., 2003; Bratu et al., 2005; 

Gregory et al., 2009; Sassi et al., 2017). 

Infectious diseases caused by MRSA include superficial 

skin and soft tissue infections, endocarditis, bacteremia, 

necrotizing pneumonia, fasciitis, and osteomyelitis, all of 

which are life-threatening conditions. The emergence of 

MRSA strains has resulted in severe mortality and morbidity 

because of the spread of these strains in hospitals and com- 

munities (Bratu et al., 2005). MRSA tends to occur during 

population infections, often characterized by a series of pre- 

dominant strains. MRSA infection without a single predom- 

inant strain also occurs worldwide, and it is more difficult 

to treat. In order to address the problem caused by MRSA, 

guidelines have been published in several countries. There 

are recommendations for the identification of MRSA, as 

well as protocols and procedures for the diagnosis of 

MRSA. These guidelines include the Clinical and Laboratory 

Standards Institute (CLSI; formerly the National Clinical 

Laboratory Standards, NCCLS) in the USA, the European 

Antimicrobial Resistance Surveillance System (EARSS) in 

Europe, and the Sociedad Española de Infectologia y Micro- 

biologia Clinica (SEIMC) in Spain. 

MRSA has a copy of the mec gene, which is located in 

the staphylococcal cassette chromosome mec (SCCmec), 

which encodes the penicillin-binding proteins (PBPs) with 

reduced affinity for β-lactam antibiotics. These PBPs in- 

clude mecA, mecB, mecC, and mecD (Harrison et al., 2013; 

Gomez-Sanz et al., 2015; Schwendener and Perreten, 2018). 

The resistance of MRSA infections to all types of β-lactam 

antibiotics, such as penicillin and methicillin, makes its 

treatment challenging. Other antibiotics, such as mupirocin, 

bind to the enzyme leucine-specific tRNA aminoacyl syn- 

thetase and inhibit protein synthesis. However, long-term 

and widespread use of mupirocin for decolonization has 

been associated with mutations in the MupA gene and chro- 

mosomal point mutations, conferring mupirocin resistance 

(Hayden et al., 2016; Dadashi et al., 2020). The macrolide 

antibiotic fusidic acid is commonly used to treat skin in- 

fections caused by S. aureus (Liu et al., 2017; Chen et al., 

2020; Liu et al., 2020). In S. aureus, the main resistance 

mechanism to various types of antibiotics is the pump-

mediated efflux mechanism (da Cruz et al., 2020). The multi- 

drug efflux pumps found in S. aureus are grouped into five 

families of membrane proteins: the ATP-binding cassette, 

small multidrug resistance family, major stimulator super- 

family (MFS), resistant nodular division superfamily, and 

multidrug and toxin extrusion family (Jang, 2016). Further- 

more, MRSA strains have additional virulence factors, such 

as toxins and adhesion proteins (Alvaro-Afonso et al., 2018; 

Smart et al., 2019). 

Recently, studies have focused on various virulence factors 

that play important roles in the pathogenesis of MRSA, 

which are encoded by multiple genes (Boulton et al., 2005; 

Shettigar and Murali, 2020). Exotoxins, which are viru- 

lence factors of S. aureus, secrete different staphylococcal 

enterotoxins (SEs), such as staphylococcal enterotoxins from 

types A to U and TSS toxin-1 (TSST-1) (Wang et al., 2008; 

Krakauer and Stiles, 2013). Exotoxins are superantigens 

(SAgs) because they combine with the major histocom- 

patibility complex class II molecules in antigenic cells and 

variable beta region of T-cell receptors to activate T cells 

more strongly than during normal Ag reactions and cause 

strong inflammatory reactions (Proft and Fraser, 2003; 

Loncarevic et al., 2005). SE, an exotoxin of S. aureus, is 

prevalent worldwide, causes gastrointestinal syndrome in 

humans, which presents with food poisoning, vomiting, and 

diarrhea (Lovseth et al., 2004; Oliveira et al., 2018). 

Other virulence factors include Panton-Valentine leuco- 

cidin (PVL), encoded by the lukS/F-PV and lukE/D genes, 

exfoliative toxins (ETs) (Ladhani, 2001; Rasheed and 

Hussein, 2020), arginine catabolic mobile element (ACME, 

arcA), β-hemolysin (hlb), TSST-1, accessory gene regulator 
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(agr), and α-hemolysin (hla) (Yarwood et al., 2004; Scherr et 

al., 2015). This review aims to provide an understanding of 

the mechanism of exotoxins and the molecular characteristics 

of S. aureus, focusing on MRSA strains and summarizing 

the current epidemic and virulence factors of MRSA. 

Recent epidemiological studies of S. aureus have focused 

particularly on the distribution of MRSA in healthcare 

settings and communities. However, in the past century, 

methicillin-susceptible S. aureus (MSSA) was also a major 

cause of outbreaks and global spread in healthcare settings. 

Moreover, it remains as one of the leading pathogens of 

hospital-acquired infections (Monaco et al., 2017). 

1. Mechanisms of methicillin resistance 

MRSA contains mecA gene that encodes the peptido- 

glycan transpeptidase, PBP2a, which reduces the affinity 

for β-lactam antibiotics (Fishovitz et al., 2014). β-lactam 

antimicrobial agents target and inhibit bacterial cell wall 

biosynthesis, particularly the synthesis of the peptidoglycan 

layer (Sarkar et al., 2017). Peptidoglycan is a major struc- 

tural component of the cell wall and is made of glycan 

strands, which are composed of repeating patterns of N-

acetylglucosamine and N-acetylmuramic acids that form 

peptide crosslinks between the N-acetyl muramic acid 

moieties of adjacent strands (Peacock and Paterson, 2015). 

For the past 75 years, β-lactams have been known to be the 

most important class of antibiotics used for the treatment 

of S. aureus infections, but some strains of S. aureus were 

found to have strong resistance mechanisms in the form of 

β-lactamase even before penicillin was marketed (Fair and 

Tor, 2014; Vestergaard et al., 2019). In addition to trans- 

peptidase activity, S. aureus has several PBPs that regulate 

peptidoglycan synthesis (Typas et al., 2011) (Fig. 1). The 

combination of β-lactam antibiotics and PBP slows the 

formation of the acyl-enzyme complex, essentially blocking 

the transpeptidase activity of these enzymes (Fisher and 

Mobashery, 2020). The mecA gene encodes PBP2a, an 

enzyme that crosslinks peptidoglycans in bacterial cell walls 

(Srisuknimit et al., 2017). PBP2a has a low affinity for β-

lactams, making it resistant to antibiotics (Baek et al., 2014). 

S. aureus is resistant to almost all antibiotics as a result of a 

single genetic element—SCCmec—and this has led to an 

increase in the number of severe MRSA strains (Lakhundi 

and Zhang, 2018). 

2. Staphylococcal cassette chromosome mec types of 

MRSA 

The methicillin resistance of MRSA is primarily caused 

by the acquisition of mecA that is located on a mobile 

genomic island known as SCCmec (Fig. 2) (Senok et al., 

2019). MRSA produces PBP2a, encoded by the mecA 

gene, which induces methicillin resistance in staphylococci 

 

Fig. 1. Diagram of the two principal antibiotic 
resistance mechanisms observed in MRSA 
bacteria. (A) Expression of an alternate form of 
penicillin-binding protein (PBP2), PBP2a, with 
reduced binding affinity for antibiotics. (B) Pro- 
duction and release of the β-lactamase enzyme, 
which cleaves antibiotic molecules and renders 
them inactive. The illustration is adapted from 
Murphy et al. (Murphy et al., 2011). 
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(Cikman et al., 2019). SCCmec is a mobile genetic element 

that ranges from 21 to 67 kbps in size and confers resistance 

to methicillin in the S. aureus species (Hashemizadeh et 

al., 2019). SCCmec elements are classified into 13 types 

(SCCmec I to XIII) based on their structural composition 

and genetic content (Baig et al., 2018; Singh-Moodley et 

al., 2019). SCCmec types II and III induce resistance to 

several antibiotics because of the presence of ancillary 

drug resistance genes in SCCmec, whereas other SCCmec 

types (I, IV, V, VI, and VII) are known to confer β-lactam 

antibiotic resistance (Lim et al., 2019). 

3. Molecular characteristics of HA- and CA-MRSA 

MRSA was first observed in clinical isolates from hospi- 

talized patients in the 1960s. However, it has rapidly spread 

since the early 1990s (David and Daum, 2010). In many 

countries, the incidence of HA-MRSA is very high, and 

the classes of antibiotics that are important for preventing 

and treating this infection are ineffective (Lindsay, 2013). 

Numerous CA-MRSA lineages have been found on every 

continent, and CA-MRSA strains are increasingly involved 

in nosocomial infections. MRSA is one of the most common 

causes of hospital- and community-associated infections, 

most of which have SCCmec types I, II, or III, whereas 

CA-MRSA strains predominantly have SCCmec type IV or 

V (Diep and Otto, 2008; Valsesia et al., 2010; Otto, 2013). 

It is unclear whether CA-MRSA strains are hospital strains 

that have spread from hospitals or whether these strains 

have acquired new SCCmec chromosomal DNA (Diederen 

and Kluytmans, 2006; van Duin and Paterson, 2020). 

Monitoring in-hospital outbreaks and identifying world- 

wide clones are key objectives of the HA-MRSA epidemio- 

logic research. HA-MRSA can spread rapidly in hospitals 

and replace other S. aureus strains (Hart et al., 2014). ST22-

MRSA-IV (also known as epidemic MRSA (EMRSA)-15) 

is the most common HA-MRSA clone found in Europe 

(Aucken et al., 2002). EMRSA-15 was discovered in the 

early 1990s in southeast England and the Midlands, whereas 

EMRSA-16 was discovered a year or two later in a hospital 

epidemic, and both have since spread widely (Aires de 

Sousa and de Lencastre, 2004). EMRSA-15 and EMRSA-

16 are genetically diverse, with CC22 (ST22) for EMRSA-

15 and CC30 (ST36) for EMRSA-16, belonging to dif- 

ferent multi-locus sequence type (MLST) clonal complexes 

(Lindsay, 2010; Silva et al., 2020). EMRSA-15 is the most 

common clone in the nosocomial and community settings 

(Johnson et al., 2005). 

4. Virulence factors of S. aureus 

Similar to the toxicity of MRSA, the toxicity of S. aureus 

varies depending on the presence of adhesion, toxins, im- 

mune evasion, and other virulence determinants (Otto, 2012). 

Fig. 2. Genetic features of SCCmec elements I-XIII. Genetic 
features of SCCmec elements I-XIII. The overall structures of the 
13 IWG-SCC-acknowledged SCCmec types are illustrated based 
on the following nucleotide sequences (SCCmec type), isolate ID 
(GenBank accession no.): type I, NCTC10442 (AB033763); type 
II, N315 (D86934); type III, 85/2082 (AB037671); type IV, CA05 
(AB063172); type V, WIS [WBG8318] (AB121219); type VI, 
HDE288 (AF411935); type VII, JCSC6082 (AB373032); type VIII,
C10682 (FJ390057); type IX, JCSC6943 (AB505628); type X, 
JCSC6945 (AB505630); type XI, LGA251 (FR821779.1); type 
XII, BA01611 (KR187111); and type XIII, 55-99-44 (MG674089).
The illustration is adapted from Hiramatsu et al. (Hiramatsu et al., 
2013). 
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Clumping factors, fibronectin-binding proteins, adhesions, 

hemolysins, and various SAgs determine toxicity. Among 

these, surface proteins can evade innate immune responses, 

interfere with adaptive immune responses, and function as 

antigens in vaccines (Foster et al., 2014). Therefore, under- 

standing the cell wall structure of S. aureus or the genetic 

mechanism for expressing proteins is important for its 

treatment. 

 

4-1. Adhesion genes (clfA, clfB, fnbA, and fnbB) 

Clumping factor A (ClfA), which is involved in a variety 

of infections, is a representative virulence factor of S. aureus 

(Munoz-Planillo et al., 2009). ClfA is responsible for the 

accumulation of bacteria in the plasma and can lead to 

arthritis and endocarditis (Bonar et al., 2015; Herman-Bausier 

et al., 2018). In addition, clfA promotes invasion of bio- 

materials coated with plasma proteins and adhesion of bac- 

teria and induces bacterial colonization and biofilm formation 

(Feuillie et al., 2017). ClfB is only 26% identical to clfA in 

the binding domain, but the overall structure is similar (D et 

al., 1998). Unlike clfA, clfB binds to fibrinogen by binding 

to the α-chain (Walsh et al., 2008). Interestingly, clfB pro- 

motes adhesion to nasal epithelial cells by binding to the 

keratinized envelope proteins, cytokeratin 10 and loricrin. 

(Crosby et al., 2016; Foster, 2019). In addition, clfB has 

recently been shown to promote bacterial adhesion to kera- 

tinocytes obtained from patients with atopic dermatitis. Some 

studies have shown that considerably more clfB is present 

in agr mutants than in wild-type cells, indicating that the 

agr system downregulates clfB gene expression (Xue et al., 

2012). 

In addition, S. aureus expresses microbial surface com- 

ponents that recognize adhesive matrix molecules, including 

fnbA, fnbB, and fib (Josse et al., 2017). Fibronectin-binding 

proteins, including FnBPA and FnBPB, are involved in 

tissue invasion in a variety of pathological conditions, such 

as ocular keratitis, osteomyelitis, and medical device-borne 

infections (Soltani et al., 2019). Moreover, fnbA and fnbB 

are mediators of cell signaling and actin cytoskeleton rear- 

rangements (Hauck and Ohlsen, 2006). The identification 

of genes related to bacterial colonization has attracted the 

attention of researchers, and specific primers have been used 

to determine the frequency of these genes and their mRNA 

expression levels using polymerase chain reaction (Delgado 

et al., 2011). 

 

4-2. Hemolysins 

Hla (α-toxin) and hlb are two types of pore-forming toxins 

(Munoz-Planillo et al., 2009). Hla is a 33-kDa polypeptide 

secreted by most strains of S. aureus, accounting for 95% of 

the clinical strains (Oliveira et al., 2018). Although this toxin 

is not toxic, it confers toxicity by oligomerizing and binding 

to the heptameric structure of the host cell membrane 

(Berube and Bubeck Wardenburg, 2013). Once hla binds to 

the target cell, it oligomerizes to a pre-pore structure and 

extrudes the β-barrel through the lipid bilayer to attack the 

cell membrane, thus forming a hydrophilic transmembrane 

channel (Voskoboinik et al., 2015; Seilie and Bubeck 

Wardenburg, 2017). This toxin is known to be widely ex- 

pressed in human cells, including epithelial cells, endothelial 

cells, T cells, monocytes, and macrophages (Cikman et al., 

2019). 

Unlike other cytotoxins, β-toxin hydrolyzes the plasma 

membrane lipid sphingomyelin into ceramide and phospho- 

rylcholine without forming pores in the plasma membrane 

(Lovseth et al., 2004). β-Toxins also have a DNA biofilm-

ligase activity (Herrera et al., 2017). The β-toxin of S. aureus 

is neutral sphingomyelinase, whose ability to lyse red blood 

cells and kill proliferating human lymphocytes is related to 

its activity (Linehan et al., 2003). This homology led to the 

hypothesis that β-toxin could bind and cleave DNA, and 

the examination of this hypothesis led to the unexpected 

conclusion that β-toxin plays a key role (Huseby et al., 2010; 

Luther et al., 2018). 

In addition, mutant strains that do not express the hlb 

gene for biofilm formation exhibited reduced pathogenicity 

for endocarditis and are less likely to cause pneumonia and 

murine ear and skin infections than the strains that express 

the hlb gene (Typas et al., 2011; Zheng et al., 2019). γ-

hemolysin (hlg) is produced in virtually all strains of S. 

aureus, and hlg can lyse a variety of mammalian erythrocytes 

(Yoong and Torres, 2013). The hlg gene is transcribed at a 

single locus on a 4.5-kb ScaI chromosome fragment (Lovseth 

et al., 2004). Hemolytic and leukemic toxicity was found in 
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extracts from clones containing this fragment (Diep and 

Otto, 2008). The hlg and PVL in S. aureus make two types 

of binary toxins called S and F components (for proteins that 

elute slowly or rapidly in ion exchange columns). The S-

class subunit is primarily responsible for cell targeting, first 

binding to the cell, and then bringing up the F-class subunit 

(Diederen and Kluytmans, 2006; DuMont and Torres, 2014). 

δ-hemolysin (hld), composed of a 26-amino acid peptide, can 

cause membrane damage in a variety of mammalian cells 

(Otto, 2012). Hld has the ability to lyse erythrocytes and 

other mammalian cells as well as subcellular structures, such 

as membrane-bound organelles, spheroids, and protoplasts 

(Melo et al., 2017). 

In the case of the overall hemolysin gene, MRSA appeared 

slightly more than MSSA. In one study, it was found that the 

presence of the genes encoding hla and hld significantly 

affected the antibiotic resistance pattern of MRSA isolates 

(Motamedi et al., 2018). The prevalence of the hemolysin 

gene in S. aureus is observed in a holistic way, because its 

diversity is also related to different geographic regions (Mir 

et al., 2019). 

 

4-3. Superantigen genes (toxic shock syndrome toxin, 

enterotoxins) 

SAgs are non-glycosylated, low-molecular-weight exo- 

proteins. They are secreted depending on cleavable signal 

peptides, which are secreted by all human pathogenic S. 

aureus and group A streptococci (Spaulding et al., 2013). 

SAgs are highly effective T cell mitogens that can stimulate 

T cells. SAg-induced T cell proliferation is followed by a T 

cell unresponsive state, in which activated T cells fail to 

proliferate or undergo apoptosis. The SAg system is one of 

the several ways by which S. aureus manipulates the host 

immune system to prevent the generation of functional 

adaptive immunity (Tam and Torres, 2019). 

TSS is an acute disease that can be potentially fatal. It 

results in high fever, diffuse erythematous rash, peeling of 

the skin one to two weeks after onset, and hypotension 

(Tang et al., 2006; Bonar et al., 2015). This disease attracted 

considerable attention in 1978 when Todd et al. identified it 

as a major systemic disease associated with non-invasive S. 

aureus infections in children (Feuillie et al., 2017). TSST is 

a S. aureus SAg that triggers TSS by stimulating the release 

of interleukin (IL)-1, IL-2, tumor necrosis factor-α, and 

other cytokines (Khan et al., 2009). 

 

4-4. Staphylococcal enterotoxins 

Enterotoxins have a common structure consisting of two 

domain folds, a long central alpha-helix, and specific N-

terminal and C-terminal motifs with a beta barrel structure 

(Fig. 3) (Josse et al., 2017). The exact mechanism of SE is 

unknown, but it activates the release of cytokines and even- 

tually induces cell death by apoptosis (Soltani et al., 2019). 

Enterotoxins are the leading cause of food poisoning and 

can cause severe intestinal peristalsis (Becker et al., 2003). 

Staphylococcal SAg toxins are a wide range of virulence 

factors associated with S. aureus. In addition to previously 

known SEs, at present, 29 SEs or enterotoxin-like proteins 

have been identified (Hu et al., 2021). SEB is a toxin that is 

highly associated with several outbreaks of food poisoning 

(Wieneke et al., 1993). SEB is commonly found in humans 

and mammals, as well as in areas with high levels of envir- 

onmental pollutants, such as sewage and smoke. SEC from 

CA-MRSA strains has also been found to cause sepsis, 

infectious endocarditis, and kidney damage (Diep and Otto, 

2008). 

 

 

Fig. 3. 3D structure of Staphylococcus enterotoxin B. The poly-
peptide fold for SEB. Helices are coloured in red, β-strands in green
and loops in yellow. The illustration is adapted from Papageorgiou 
et al. (Papageorgiou et al., 1998). 
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4-5. Other virulence factors (PVL, LukED, ETA, and 

ETB) 

PVL and LukED are heterologous families in which 

toxin components are classified as F or S proteins. They 

are separately secreted and assembled on the cell surface to 

form heterologous oligomeric pores and lyse blood cells 

(Yanai et al., 2014). Additionally, they are associated with 

purulent infections and are encoded by two successive and 

co-transcribed genes that are passed on to bacteriophages, 

causing leukocyte destruction and tissue necrosis. However, 

their exact role in skin infections has not yet been identified 

(Cocchi et al., 2013). PVL was generally found at the 

beginning of the CA-MRSA epidemic, and the lukS and 

lukF genes were found in almost all CA-MRSA clones. 

Recently, PVL has been shown to be associated with CA-

MRSA in a study on the association between infections that 

are in progress and strains (Bhatta et al., 2016); however, 

the association between PVL and CA-MRSA remains con- 

troversial. Although PVL can be utilized as a screening 

marker for CA-MRSA, it is difficult to determine because 

of the presence of PVL-positive HA-MRSA strains. HA-

MRSA may lead to the emergence of multidrug-resistant 

HA-MRSA isolates with increased toxicity (Rossney et al., 

2007; Hu et al., 2015). As PVL phages from existing MRSA 

are expected to spread to other HA-MRSA strains, HA-

MRSA infections need to be further divided into hospital-

borne or community-borne infections (Narita et al., 2001; 

Klevens et al., 2007). 

ETs, also known as specific serine proteases, are secreted 

virulence factors produced by staphylococci (Shopsin et al., 

2003; Abimanyu et al., 2013). These proteases have high 

substrate specificity and recognize and hydrolyze desmo- 

somal proteins in the skin. ETs are involved in the loss of 

cell-cell adhesion and cleavage of keratinocyte junctions in 

the epidermis of the host that can cause skin damage. Strains 

of ETs include ETA, ETB, ETC, and ETD. ETA and ETB 

are the most important factors in human skin damage. ETC 

has not yet been associated with human diseases. These 

ETs are produced in approximately 5% of the S. aureus 

strains. ETA is highly prevalent in Europe, Africa, and the 

United States, whereas ETB is more common in Japan. 

The production of ETs in certain strains of S. aureus is 

associated with local epidermal infections, such as bullous 

impetigo and staphylococcal laceration skin syndrome, which 

are common diseases (Saiman et al., 2003; Healy et al., 2004; 

Bratu et al., 2005). 

 

CONCLUSION 

 

We described the resistance of MRSA to β-lactam anti- 

biotics, with an emphasis on mecA, which is carried by a 

mobile genetic element called SCCmec. The mecA gene 

encodes PBP2a that has a low affinity for β-lactam anti- 

biotics. In this review, the classification criteria for mecA, 

new mec homologs (mecB, mecC, and mecD), and SCCmec 

types (13 SCCmec types that have been found to date) 

were discussed. SCCmec has entered S. aureus on multiple 

occasions with a relatively high frequency, but the origin of 

the mec element remains unclear. MRSA strains possess 

specific virulence mechanisms controlled by toxins, adhe- 

sion proteins, and enzymes. However, the molecular factors 

underlying the spread of the CA- and HA-MRSA strains 

remain unknown. Important strains have emerged, such as 

EMRSA and CA-MRSA, and each strain poses unique chal- 

lenges to human healthcare and animal husbandry. Therefore, 

conducting research on the virulence of infectious MRSA 

strains is important. Further studies are needed to determine 

the regulation of virulence factors and dynamics of virulence 

factor transmission in MRSA strains. 
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