DOI QR코드

DOI QR Code

Molecular Characteristics and Exotoxins of Methicillin-Resistant Staphylococcus aureus

  • Bae, Jinyoung (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Jin, Hyunwoo (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Jungho (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Park, Min (Department of Biomedical Laboratory Science, Masan University) ;
  • Lee, Jiyoung (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Sunghyun (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • Received : 2021.10.21
  • Accepted : 2021.12.03
  • Published : 2021.12.31

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen capable of causing human diseases, such as soft tissue infection, bacteremia, endocarditis, toxic shock syndrome, pneumonia, and sepsis. Although the incidence rate of diseases caused by MRSA has declined in recent years, these diseases still pose a clinical threat due to their consistently high morbidity and mortality rates. However, the role of virulence factors in staphylococcal infections remains incompletely understood. Methicillin resistance, which confers resistance to all β-lactam antibiotics in cellular islets, is mediated by the mecA gene in the staphylococcal cassette chromosome mec (SCCmec). Differences in SCCmec types and differences in their sizes and structures serve epidemiological purposes and are used to differentiate between hospital-associated (HA)-MRSA and community-associated (CA)-MRSA. Some virulence factors of S. aureus are also providing a distinction between HA-MRSA and CA-MRSA. These factors vary depending on the presence of toxins, adhesion, immune evasion, and other virulence determinants. In this review, we summarized an overview of MRSA such as resistance mechanisms, SCCmec types, HA- and CA-MRSA, and virulence factors that enhance pathogenicity or MRSA epidemiology, transmission, and genetic diversity.

Keywords

Acknowledgement

This paper was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A6A3A01099438), the Center for Women In Science, Engineering and Technology (WISET) and WISET Regional Agency of PKNU Grant funded by the Ministry of Science, and Brain Busan 21 Plus project.

References

  1. Abimanyu N, Murugesan S, Krishnan P. High prevalence of exfoliative toxins among carrier isolates of Staphylococcus aureus from healthy individuals from various communities in chennai, south india. Indian J Microbiol. 2013. 53: 288-290. https://doi.org/10.1007/s12088-013-0360-9
  2. Aires de Sousa M, de Lencastre H. Bridges from hospitals to the laboratory: Genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol Med Microbiol. 2004. 40: 101-111. https://doi.org/10.1016/S0928-8244(03)00370-5
  3. Alvaro-Afonso FJ, Lazaro-Martinez JL, Papanas N. To smoke or not to smoke: Cigarettes have a negative effect on wound healing of diabetic foot ulcers. Int J Low Extrem Wounds. 2018. 17: 258-260. https://doi.org/10.1177/1534734618808168
  4. Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D, Jansen KU. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother. 2012. 8: 1585-1594. https://doi.org/10.4161/hv.21872
  5. Assis LM, Nedeljkovic M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat. 2017. 31: 1-14. https://doi.org/10.1016/j.drup.2017.03.001
  6. Aucken HM, Ganner M, Murchan S, Cookson BD, Johnson AP. A new uk strain of epidemic methicillin-resistant Staphylococcus aureus (emrsa-17) resistant to multiple antibiotics. J Antimicrob Chemother. 2002. 50: 171-175. https://doi.org/10.1093/jac/dkf117
  7. Baek KT, Grundling A, Mogensen RG, Thogersen L, Petersen A, Paulander W, Frees D. Beta-lactam resistance in methicillin-resistant Staphylococcus aureus usa300 is increased by inactivation of the clpxp protease. Antimicrob Agents Chemother. 2014. 58: 4593-4603. https://doi.org/10.1128/AAC.02802-14
  8. Baig S, Johannesen TB, Overballe-Petersen S, Larsen J, Larsen AR, Stegger M. Novel sccmec type xiii (9a) identified in an st152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol. 2018. 61: 74-76. https://doi.org/10.1016/j.meegid.2018.03.013
  9. Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol. 2003. 41: 1434-1439. https://doi.org/10.1128/JCM.41.4.1434-1439.2003
  10. Benner EJ, Kayser FH. Growing clinical significance of methcillin-resistant Staphylococcus aureus. Lancet. 1968. 2: 741-744. https://doi.org/10.1016/S0140-6736(68)90947-1
  11. Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus alpha-toxin: Nearly a century of intrigue. Toxins (Basel). 2013. 5: 1140-1166. https://doi.org/10.3390/toxins5061140
  12. Bhatta DR, Cavaco LM, Nath G, Kumar K, Gaur A, Gokhale S, Bhatta DR. Association of panton valentine leukocidin (pvl) genes with methicillin resistant Staphylococcus aureus (mrsa) in western nepal: A matter of concern for community infections (a hospital based prospective study). BMC Infect Dis. 2016. 16: 199. https://doi.org/10.1186/s12879-016-1531-1
  13. Bonar E, Wojcik I, Wladyka B. Proteomics in studies of Staphylococcus aureus virulence. Acta Biochim Pol. 2015. 62: 367-381. https://doi.org/10.18388/abp.2015_1083
  14. Boulton AJM, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. The Lancet. 2005. 366: 1719-1724. https://doi.org/10.1016/S0140-6736(05)67698-2
  15. Bratu S, Eramo A, Kopec R, Coughlin E, Ghitan M, Yost R, Chapnick EK, Landman D, Quale J. Community-associated methicillin-resistant Staphylococcus aureus in hospital nursery and maternity units. Emerg Infect Dis. 2005. 11: 808-813. https://doi.org/10.3201/eid1106.040885
  16. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009. 7: 629-641. https://doi.org/10.1038/nrmicro2200
  17. Chen W, He C, Yang H, Shu W, Cui Z, Tang R, Zhang C, Liu Q. Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus with mupirocin, fusidic acid and/or retapamulin resistance. BMC Microbiol. 2020. 20: 183. https://doi.org/10.1186/s12866-020-01862-z
  18. Cikman A, Aydin M, Gulhan B, Karakecili F, Kurtoglu MG, Yuksekkaya S, Parlak M, Gultepe BS, Cicek AC, Bilman FB, Ciftci IH, Kara M, Atmaca S, Ozekinci T. Absence of the mecc gene in methicillin-resistant Staphylococcus aureus isolated from various clinical samples: The first multi-centered study in turkey. J Infect Public Health. 2019. 12: 528-533. https://doi.org/10.1016/j.jiph.2019.01.063
  19. Cocchi P, Taccetti G, Montagnani C, Campana S, Galli L, Braggion C, de Martino M. Evidence of transmission of a panton-valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus clone: A family affair. Clin Microbiol Infect. 2013. 19: 1158-1162. https://doi.org/10.1111/1469-0691.12159
  20. Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv Appl Microbiol. 2016. 96: 1-41. https://doi.org/10.1016/bs.aambs.2016.07.018
  21. D NE, Perkins S, Francois P, Vaudaux P, Hook M, Foster TJ. Clumping factor b (clfb), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol. 1998. 30: 245-257. https://doi.org/10.1046/j.1365-2958.1998.01050.x
  22. da Cruz RMD, Zelli R, Benshain S, da Cruz RMD, Siqueira-Junior JP, Decout JL, Mingeot-Leclercq MP, Mendonca-Junior FJB. Synthesis and evaluation of 2-aminothiophene derivatives as Staphylococcus aureus efflux pump inhibitors. Chem Med Chem. 2020. 15: 716-725. https://doi.org/10.1002/cmdc.201900688
  23. Dadashi M, Hajikhani B, Darban-Sarokhalil D, van Belkum A, Goudarzi M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J Glob Antimicrob Resist. 2020. 20: 238-247. https://doi.org/10.1016/j.jgar.2019.07.032
  24. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010. 23: 616-687. https://doi.org/10.1128/CMR.00081-09
  25. Delgado S, Garcia P, Fernandez L, Jimenez E, Rodriguez-Banos M, del Campo R, Rodriguez JM. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol Med Microbiol. 2011. 62: 225-235. https://doi.org/10.1111/j.1574-695X.2011.00806.x
  26. Diederen BM, Kluytmans JA. The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. J Infect. 2006. 52: 157-168. https://doi.org/10.1016/j.jinf.2005.09.001
  27. Diep BA, Otto M. The role of virulence determinants in community-associated mrsa pathogenesis. Trends Microbiol. 2008. 16: 361-369. https://doi.org/10.1016/j.tim.2008.05.002
  28. DuMont AL, Torres VJ. Cell targeting by the Staphylococcus aureus pore-forming toxins: It's not just about lipids. Trends in Microbiology. 2014. 22: 21-27. https://doi.org/10.1016/j.tim.2013.10.004
  29. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014. 6: 25-64. https://doi.org/10.4137/pmc.s14459
  30. Feuillie C, Formosa-Dague C, Hays LM, Vervaeck O, Derclaye S, Brennan MP, Foster TJ, Geoghegan JA, Dufrene YF. Molecular interactions and inhibition of the staphylococcal biofilm-forming protein sdrc. Proc Natl Acad Sci U S A. 2017. 114: 3738-3743. https://doi.org/10.1073/pnas.1616805114
  31. Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci. 2020. 29: 629-646. https://doi.org/10.1002/pro.3737
  32. Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014. 66: 572-577. https://doi.org/10.1002/iub.1289
  33. Foster TJ. The mscramm family of cell-wall-anchored surface proteins of gram-positive cocci. Trends Microbiol. 2019. 27: 927-941. https://doi.org/10.1016/j.tim.2019.06.007
  34. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014. 12: 49-62. https://doi.org/10.1038/nrmicro3161
  35. Fri J, Njom HA, Ateba CN, Ndip RN. Antibiotic resistance and virulence gene characteristics of methicillin-resistant Staphylococcus aureus (mrsa) isolated from healthy edible marine fish. Int J Microbiol. 2020. 2020: 9803903.
  36. G CB, Sahukhal GS, Elasri MO. Role of the msaabcr operon in cell wall biosynthesis, autolysis, integrity, and antibiotic resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2019. 63.
  37. Gomez-Sanz E, Schwendener S, Thomann A, Gobeli Brawand S, Perreten V. First staphylococcal cassette chromosome mec containing a mecb-carrying gene complex independent of transposon tn6045 in a macrococcus canis isolate from a canine infection. Antimicrob Agents Chemother. 2015. 59: 4577-4583. https://doi.org/10.1128/AAC.05064-14
  38. Gregory ML, Eichenwald EC, Puopolo KM. Seven-year experience with a surveillance program to reduce methicillin-resistant Staphylococcus aureus colonization in a neonatal intensive care unit. Pediatrics. 2009. 123: e790-796. https://doi.org/10.1542/peds.2008-1526
  39. Harrison EM, Paterson GK, Holden MT, Morgan FJ, Larsen AR, Petersen A, Leroy S, De Vliegher S, Perreten V, Fox LK, Lam TJ, Sampimon OC, Zadoks RN, Peacock SJ, Parkhill J, Holmes MA. A staphylococcus xylosus isolate with a new mecc allotype. Antimicrob Agents Chemother. 2013. 57: 1524-1528. https://doi.org/10.1128/AAC.01882-12
  40. Hart J, Christiansen KJ, Lee R, Heath CH, Coombs GW, Robinson JO. Increased emrsa-15 health-care worker colonization demonstrated in retrospective review of emrsa hospital outbreaks. Antimicrobial Resistance and Infection Control. 2014. 3: 7. https://doi.org/10.1186/2047-2994-3-7
  41. Hashemizadeh Z, Hadi N, Mohebi S, Kalantar-Neyestanaki D, Bazargani A. Characterization of sccmec, spa types and multi drug resistant of methicillin-resistant Staphylococcus aureus isolates among inpatients and outpatients in a referral hospital in shiraz, iran. BMC Res Notes. 2019. 12: 614. https://doi.org/10.1186/s13104-019-4627-z
  42. Hauck CR, Ohlsen K. Sticky connections: Extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol. 2006. 9: 5-11. https://doi.org/10.1016/j.mib.2005.12.002
  43. Hayden MK, Lolans K, Haffenreffer K, Avery TR, Kleinman K, Li H, Kaganov RE, Lankiewicz J, Moody J, Septimus E, Weinstein RA, Hickok J, Jernigan J, Perlin JB, Platt R, Huang SS. Chlorhexidine and mupirocin susceptibility of methicillin-resistant Staphylococcus aureus isolates in the reduce-mrsa trial. J Clin Microbiol. 2016. 54: 2735-2742. https://doi.org/10.1128/JCM.01444-16
  44. Healy CM, Hulten KG, Palazzi DL, Campbell JR, Baker CJ. Emergence of new strains of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Clin Infect Dis. 2004. 39: 1460-1466. https://doi.org/10.1086/425321
  45. Herman-Bausier P, Labate C, Towell AM, Derclaye S, Geoghegan JA, Dufrene YF. Staphylococcus aureus clumping factor a is a force-sensitive molecular switch that activates bacterial adhesion. Proc Natl Acad Sci U S A. 2018. 115: 5564-5569. https://doi.org/10.1073/pnas.1718104115
  46. Herrera A, Kulhankova K, Sonkar VK, Dayal S, Klingelhutz AJ, Salgado-Pabon W, Schlievert PM. Staphylococcal beta-toxin modulates human aortic endothelial cell and platelet function through sphingomyelinase and biofilm ligase activities. mBio. 2017. 8.
  47. Hu DL, Li S, Fang R, Ono HK. Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins. Animal Diseases. 2021. 1: 7. https://doi.org/10.1186/s44149-021-00007-7
  48. Hu Q, Cheng H, Yuan W, Zeng F, Shang W, Tang D, Xue W, Fu J, Zhou R, Zhu J, Yang J, Hu Z, Yuan J, Zhang X, Rao Q, Li S, Chen Z, Hu X, Wu X, Rao X. Panton-valentine leukocidin (pvl)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective pvl-encoding bacteriophages. J Clin Microbiol. 2015. 53: 67-72. https://doi.org/10.1128/JCM.01722-14
  49. Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE, Bayles KW, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA. Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A. 2010. 107: 14407-14412. https://doi.org/10.1073/pnas.0911032107
  50. Jang S. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol. 2016. 54: 1-8. https://doi.org/10.1007/s12275-016-5159-z
  51. Johnson AP, Pearson A, Duckworth G. Surveillance and epidemiology of mrsa bacteraemia in the uk. J Antimicrob Chemother. 2005. 56: 455-462. https://doi.org/10.1093/jac/dki266
  52. Josse J, Laurent F, Diot A. Staphylococcal adhesion and host cell invasion: Fibronectin-binding and other mechanisms. Front Microbiol. 2017. 8: 2433. https://doi.org/10.3389/fmicb.2017.02433
  53. Khan AA, Priya S, Saha B. Il-2 regulates seb induced toxic shock syndrome in balb/c mice. PLoS One. 2009. 4: e8473. https://doi.org/10.1371/journal.pone.0008473
  54. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK. Invasive methicillin-resistant Staphylococcus aureus infections in the united states. Jama. 2007. 298: 1763-1771. https://doi.org/10.1001/jama.298.15.1763
  55. Krakauer T, Stiles BG. The staphylococcal enterotoxin (se) family: Seb and siblings. Virulence. 2013. 4: 759-773. https://doi.org/10.4161/viru.23905
  56. Ladhani S. Recent developments in staphylococcal scalded skin syndrome. Clin Microbiol Infect. 2001. 7: 301-307. https://doi.org/10.1046/j.1198-743x.2001.00258.x
  57. Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018. 31.
  58. Lim WW, Wu P, Bond HS, Wong JY, Ni K, Seto WH, Jit M, Cowling BJ. Determinants of methicillin-resistant Staphylococcus aureus (mrsa) prevalence in the asia-pacific region: A systematic review and meta-analysis. J Glob Antimicrob Resist. 2019. 16: 17-27. https://doi.org/10.1016/j.jgar.2018.08.014
  59. Lindsay JA. Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol. 2010. 300: 98-103. https://doi.org/10.1016/j.ijmm.2009.08.013
  60. Lindsay JA. Hospital-associated mrsa and antibiotic resistance-what have we learned from genomics? Int J Med Microbiol. 2013. 303: 318-323. https://doi.org/10.1016/j.ijmm.2013.02.005
  61. Linehan D, Etienne J, Sheehan D. Relationship between haemolytic and sphingomyelinase activities in a partially purified beta-like toxin from staphylococcus schleiferi. FEMS Immunol Med Microbiol. 2003. 36: 95-102. https://doi.org/10.1016/S0928-8244(03)00089-0
  62. Liu L, Shen X, Yu J, Cao X, Zhan Q, Guo Y, Yu F. Subinhibitory concentrations of fusidic acid may reduce the virulence of S. aureus by down-regulating sara and saers to reduce biofilm formation and α-toxin expression. Front Microbiol. 2020. 11: 25. https://doi.org/10.3389/fmicb.2020.00025
  63. Liu X, Deng S, Huang J, Huang Y, Zhang Y, Yan Q, Wang Y, Li Y, Sun C, Jia X. Dissemination of macrolides, fusidic acid and mupirocin resistance among Staphylococcus aureus clinical isolates. Oncotarget. 2017. 8: 58086-58097. https://doi.org/10.18632/oncotarget.19491
  64. Loncarevic S, Jorgensen HJ, Lovseth A, Mathisen T, Rorvik LM. Diversity of Staphylococcus aureus enterotoxin types within single samples of raw milk and raw milk products. J Appl Microbiol. 2005. 98: 344-350. https://doi.org/10.1111/j.1365-2672.2004.02467.x
  65. Lovseth A, Loncarevic S, Berdal KG. Modified multiplex pcr method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J Clin Microbiol. 2004. 42: 3869-3872. https://doi.org/10.1128/JCM.42.8.3869-3872.2004
  66. Luther MK, Parente DM, Caffrey AR, Daffinee KE, Lopes VV, Martin ET, LaPlante KL. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus. Antimicrob Agents Chemother. 2018. 62.
  67. Melo MCA, Rodrigues CG, Pol-Fachin L. Staphylococcus aureus delta-toxin in aqueous solution: Behavior in monomeric and multimeric states. Biophys Chem. 2017. 227: 21-28. https://doi.org/10.1016/j.bpc.2017.05.015
  68. Mir Z, Nodeh Farahani N, Abbasian S, Alinejad F, Sattarzadeh M, Pouriran R, Dahmardehei M, Mirzaii M, Khoramrooz SS, Darban-Sarokhalil D. The prevalence of exotoxins, adhesion, and biofilm-related genes in Staphylococcus aureus isolates from the main burn center of tehran, iran. Iranian journal of basic medical sciences. 2019. 22: 1267-1274.
  69. Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017. 409: 21-56.
  70. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, Albrecht V, Limbago B, Talan DA, Group EMINS. Prevalence of methicillin-resistant Staphylococcus aureus as an etiology of community-acquired pneumonia. Clin Infect Dis. 2012. 54: 1126-1133. https://doi.org/10.1093/cid/cis022
  71. Motamedi H, Asghari B, Tahmasebi H, Arabestani MR. Identification of hemolysine genes and their association with antimicrobial resistance pattern among clinical isolates of Staphylococcus aureus in west of iran. Advanced Biomedical Research. 2018. 7: 153-153. https://doi.org/10.4103/abr.abr_143_18
  72. Munoz-Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the nlrp3 inflammasome. J Immunol. 2009. 183: 3942-3948. https://doi.org/10.4049/jimmunol.0900729
  73. Narita S, Kaneko J, Chiba J, Piemont Y, Jarraud S, Etienne J, Kamio Y. Phage conversion of panton-valentine leukocidin in Staphylococcus aureus: Molecular analysis of a pvl-converting phage, phislt. Gene. 2001. 268: 195-206. https://doi.org/10.1016/S0378-1119(01)00390-0
  74. Nimmo GR. Usa300 abroad: Global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2012. 18: 725-734. https://doi.org/10.1111/j.1469-0691.2012.03822.x
  75. Oliveira D, Borges A, Simoes M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018. 10.
  76. Otto M. Mrsa virulence and spread. Cell Microbiol. 2012. 14: 1513-1521. https://doi.org/10.1111/j.1462-5822.2012.01832.x
  77. Otto M. Community-associated mrsa: What makes them special? Int J Med Microbiol. 2013. 303: 324-330. https://doi.org/10.1016/j.ijmm.2013.02.007
  78. Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem. 2015. 84: 577-601. https://doi.org/10.1146/annurev-biochem-060614-034516
  79. Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003. 133: 299-306. https://doi.org/10.1046/j.1365-2249.2003.02203.x
  80. Rasheed NA, Hussein NR. Characterization of different virulent factors in methicillin-resistant Staphylococcus aureus isolates recovered from iraqis and syrian refugees in duhok city, iraq. PLoS One. 2020. 15: e0237714. https://doi.org/10.1371/journal.pone.0237714
  81. Rossney AS, Shore AC, Morgan PM, Fitzgibbon MM, O'Connell B, Coleman DC. The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus aureus (mrsa) harboring the panton-valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired mrsa strains in ireland. J Clin Microbiol. 2007. 45: 2554-2563. https://doi.org/10.1128/JCM.00245-07
  82. Saiman L, O'Keefe M, Graham PL 3rd, Wu F, Said-Salim B, Kreiswirth B, LaSala A, Schlievert PM, Della-Latta P. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin Infect Dis. 2003. 37: 1313-1319. https://doi.org/10.1086/379022
  83. Samanta D, Elasri MO. The msaabcr operon regulates resistance in vancomycin-intermediate Staphylococcus aureus strains. Antimicrob Agents Chemother. 2014. 58: 6685-6695. https://doi.org/10.1128/AAC.03280-14
  84. Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm. 2017. 8: 516-533. https://doi.org/10.1039/c6md00585c
  85. Sassi R, Bond RR, Cairns A, Finlay DD, Guldenring D, Libretti G, Isola L, Vaglio M, Poeta R, Campana M, Cuccia C, Badilini F. Pdf-ecg in clinical practice: A model for long-term preservation of digital 12-lead ecg data. J Electrocardiol. 2017. 50: 776-780. https://doi.org/10.1016/j.jelectrocard.2017.08.001
  86. Scherr TD, Hanke ML, Huang O, James DB, Horswill AR, Bayles KW, Fey PD, Torres VJ, Kielian T. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin ab and alpha-toxin. mBio. 2015. 6.
  87. Schwendener S, Perreten V. The integrase of the macrococcus caseolyticus resistance island mecd (mcrimecd) inserts DNA site-specifically into staphylococcus and bacillus chromosomes. Mol Microbiol. 2018. 110: 455-468. https://doi.org/10.1111/mmi.14112
  88. Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol. 2017. 72: 101-116. https://doi.org/10.1016/j.semcdb.2017.04.003
  89. Senok A, Slickers P, Hotzel H, Boswihi S, Braun SD, Gawlik D, Muller E, Nabi A, Nassar R, Nitschke H, Reissig A, Ruppelt-Lorz A, Mafofo J, Somily AM, Udo E, Ehricht R, Monecke S. Characterisation of a novel sccmec vi element harbouring fusc in an emerging Staphylococcus aureus strain from the arabian gulf region. PLoS One. 2019. 14: e0223985. https://doi.org/10.1371/journal.pone.0223985
  90. Shettigar K, Murali TS. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis. 2020. 39: 2235-2246. https://doi.org/10.1007/s10096-020-03984-8
  91. Shopsin B, Mathema B, Alcabes P, Said-Salim B, Lina G, Matsuka A, Martinez J, Kreiswirth BN. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J Clin Microbiol. 2003. 41: 456-459. https://doi.org/10.1128/JCM.41.1.456-459.2003
  92. Silva V, Hermenegildo S, Ferreira C, Manaia CM, Capita R, Alonso-Calleja C, Carvalho I, Pereira JE, Maltez L, Capelo JL, Igrejas G, Poeta P. Genetic characterization of methicillin-resistant Staphylococcus aureus isolates from human bloodstream infections: Detection of mls(b) resistance. Antibiotics (Basel). 2020. 9.
  93. Singh-Moodley A, Strasheim W, Mogokotleng R, Ismail H, Perovic O. Unconventional sccmec types and low prevalence of the panton-valentine leukocidin exotoxin in south african blood culture Staphylococcus aureus surveillance isolates, 2013-2016. PLoS One. 2019. 14: e0225726. https://doi.org/10.1371/journal.pone.0225726
  94. Smart H, AlGhareeb AM, Smart SA. 25-hydroxyvitamin d deficiency: Impacting deep-wound infection and poor healing outcomes in patients with diabetes. Adv Skin Wound Care. 2019. 32: 321-328. https://doi.org/10.1097/01.ASW.0000559614.90819.45
  95. Soltani E, Farrokhi E, Zamanzad B, Shahini Shams Abadi M, Deris F, Soltani A, Gholipour A. Prevalence and distribution of adhesins and the expression of fibronectin-binding protein (fnba and fnbb) among Staphylococcus aureus isolates from shahrekord hospitals. BMC Res Notes. 2019. 12: 49. https://doi.org/10.1186/s13104-019-4055-0
  96. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DYM, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clinical Microbiology Reviews. 2013. 26: 422-447. https://doi.org/10.1128/CMR.00104-12
  97. Srisuknimit V Sr, Qiao Y, Schaefer K, Kahne D, Walker S. Peptidoglycan cross-linking preferences of Staphylococcus aureus penicillin-binding proteins have implications for treating mrsa infections. J Am Chem Soc. 2017. 139: 9791-9794. https://doi.org/10.1021/jacs.7b04881
  98. Tam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiology Spectrum. 2019. 7: 10.1128/microbiolspec.GPP1123-0039-2018.
  99. Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H, Wu B, Wang H, Zhao H, Lin Y, Yue J, Wu Z, He X, Gao F, Khan AH, Wang JWang J et al. Streptococcal toxic shock syndrome caused by streptococcus suis serotype 2. PLoS Med. 2006. 3: e151. https://doi.org/10.1371/journal.pmed.0030151
  100. Tong SY, Chen LF, Fowler VG Jr. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: What is the clinical relevance? Semin Immunopathol. 2012. 34: 185-200. https://doi.org/10.1007/s00281-011-0300-x
  101. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015. 28: 603-661. https://doi.org/10.1128/CMR.00134-14
  102. Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol. 2011. 10: 123-136. https://doi.org/10.1038/nrmicro2677
  103. Valsesia G, Rossi M, Bertschy S, Pfyffer GE. Emergence of sccmec type iv and sccmec type v methicillin-resistant Staphylococcus aureus containing the panton-valentine leukocidin genes in a large academic teaching hospital in central switzerland: External invaders or persisting circulators? J Clin Microbiol. 2010. 48: 720-727. https://doi.org/10.1128/JCM.01890-09
  104. van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: An update. Infect Dis Clin North Am. 2020. 34: 709-722. https://doi.org/10.1016/j.idc.2020.08.002
  105. Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the mrsa problem. Microbiol Spectr. 2019. 7.
  106. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: Function, dysfunction and human pathology. Nat Rev Immunol. 2015. 15: 388-400. https://doi.org/10.1038/nri3839
  107. Walsh EJ, Miajlovic H, Gorkun OV, Foster TJ. Identification of the Staphylococcus aureus mscramm clumping factor b (clfb) binding site in the alphac-domain of human fibrinogen. Microbiology (Reading). 2008. 154: 550-558. https://doi.org/10.1099/mic.0.2007/010868-0
  108. Wang S, Li Y, Xiong H, Cao J. A broad-spectrum inhibitory peptide against staphylococcal enterotoxin superantigen sea, seb and sec. Immunol Lett. 2008. 121: 167-172. https://doi.org/10.1016/j.imlet.2008.10.007
  109. Wieneke AA, Roberts D, Gilbert RJ. Staphylococcal food poisoning in the united kingdom, 1969-90. Epidemiol Infect. 1993. 110: 519-531. https://doi.org/10.1017/S0950268800050949
  110. Xue T, You Y, Shang F, Sun B. Rot and agr system modulate fibrinogen-binding ability mainly by regulating clfb expression in Staphylococcus aureus nctc8325. Med Microbiol Immunol. 2012. 201: 81-92. https://doi.org/10.1007/s00430-011-0208-z
  111. Yanai M, Rocha MA, Matolek AZ, Chintalacharuvu A, Taira Y, Chintalacharuvu K, Beenhouwer DO. Separately or combined, lukg/lukh is functionally unique compared to other staphylococcal bicomponent leukotoxins. PLoS One. 2014. 9: e89308-e89308. https://doi.org/10.1371/journal.pone.0089308
  112. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol. 2004. 186: 1838-1850. https://doi.org/10.1128/JB.186.6.1838-1850.2004
  113. Yoong P, Torres VJ. The effects of Staphylococcus aureus leukotoxins on the host: Cell lysis and beyond. Curr Opin Microbiol. 2013. 16: 63-69. https://doi.org/10.1016/j.mib.2013.01.012
  114. Zheng Y, Shang W, Peng H, Rao Y, Zhao X, Hu Z, Yang Y, Hu Q, Tan L, Xiong K, Li S, Zhu J, Hu X, Zhou R, Li M, Rao X. Virulence determinants are required for brain abscess formation through Staphylococcus aureus infection and are potential targets of antivirulence factor therapy. Front Microbiol. 2019. 10: 682. https://doi.org/10.3389/fmicb.2019.00682