• Title/Summary/Keyword: Methicillin-resistant S. aureus

Search Result 232, Processing Time 0.025 seconds

Antibacterial Effect of Sohamhyung-tang Against Methicillin-Resistant Staphylococcus aureus (소함흉탕(小陷胸湯)의 Methicillin 내성 Staphylococcus aureus에 대한 항균활성 연구)

  • Yum, Dae Yul;Baek, Dong Ki;Song, Yung Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.886-893
    • /
    • 2012
  • Methicillin-Resistant Staphylococcus aureus (MRSA) is a cephalosporin and beta-lactam antibiotic-resistant strain. In most cases, MRSA is spread from infected patients and infection rates are growing increasingly. Furthermore, increased resistance to antibiotics is causing serious problems in the world. Staphylococcus aureus is responsible for both nosocomial and community-based infections that range from relatively minor skin and soft tissue infections to life-threatening systemic infections. Therefore, there is a need to develop alternative antimicrobial drugs for the treatment of infectious diseases. In this study, we investigated antimicrobial activity of oriental medicine prescription against MRSA. The minimum inhibitory concentration (MIC) of Sohamhyung-tang water extract against S. aureus strains ranged from 500 to 2,000 ${\mu}g/mL$, so we have it confirmed that a strong antibacterial effect. Also, the combinations of Sohamhyung-tang water extract and conventional antibiotics exhibited improved inhibition of MRSA with synergy effect. We suggest that Sohamhyung-tang water extract against MRSA have antibacterial activity, it has potential as alternatives to antibiotic agent. We suggest that the Sohamhyung-tang water extract lead the treatment of bacterial infection to solve the resistance and remaining side-effect problems that are the major weak points of traditional antibiotics.

Screening of Antimicrobial Activity from the Marine-Derived Fungus (해양균류의 항균활성 검색)

  • Li, Yong;Li, Xifeng;Choi, Hong-Dae;Son, Byeng-Wha
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.2 s.133
    • /
    • pp.142-144
    • /
    • 2003
  • Acetone extracts of 301 strains of marine-derived fungus were tested for antimicrobial activity against three strains of bacteria. The bacteria consisted of three pathogens, Staphylococcus aureus, methicillin-resistant S. Aureus, and multidrug-resistant S. aureus. The acetone extracts of 10 strains (MFA117, MFA130, MFA134, MFA206, MFA217, MFA268, MFA277, MFA291, MFA292, MFA301) showed strong activity, inhibiting 100% of the bacterial growth. These antimicrobial active strains were cultlued in SWS medium on a 1 L scale and the resulting broth and mycelium were extracted to afford mycelium extract (000M) and broth extract (000B), respectively. Antimicrobial activity for all extracts has been tested as the results, the mycelium extract of one strain (217M) and the broth extracts of 9 strains (117B,130B, 134B, 206B, 268B, 277B, 291B, 292B, 301B) exhibited relatively high levels of activity at minimal inhibitory concentration (MIC) values of $500-125\;{\mu}g/mL$ range. Among them, the extracts, 277B, 291B, 292B and 301B showed the most significant antimicrobial activity with $IC_{50}$ values of $125\;{\mu}g/mL$.

Antimicrobial resistance of Staphylococcus aureus isolated from domestic and imported raw meat in Korea

  • Heo, Hee Jin;Ku, Bok Kyung;Bae, Dong Hwa;Park, Cheong Kyu;Lee, Young Ju
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • The rapid evolution of antibiotic resistance in Staphylococcus (S.) aureus is of considerable concern. Methicillin-resistant S. aureus (MRSA) strains are especially one of the greatest public concerns since the treatment of infections is more difficult when encountering resistance. In this study, we conducted a nationwide survey on the antimicrobial resistance of S. aureus isolated from raw meat samples collected from 16 countries, including Korea, and investigated the prevalence of MRSA as a possible source of human infection. Of 1,984 meat samples, S. aureus was isolated from 218 (11.0%) samples consisting of 23 (12.1%) from domestic meat and 195 (10.9%) from imported meat. The isolation rates of poultry meat, pork and beef were 12.8%, 7.0% and 10.0%, respectively. With regard to imported meat, the incidence varied from 4.8% to 16.6% from 13 countries, with the exception of Austria and Poland. In a resistance test to 20 antimicrobial agents, one hundred and eighty-four isolates (84.4%) were resistant to one or more antimicrobial agents tested. Especially, 17 (7.8%), 124 (56.9%) and 28 (12.8%) isolates showed a resistance to 3, 2 and 1 drugs, respectively. One isolate originating from domestic beef was resistant to 7 drugs. Another isolate originating from imported poultry meat showed resistance to oxacillin and methicillin by the disk diffusion test and minimal inhibition concentration methods, but showed negative for detection of the mecA gene.

Antimicrobial Effect of Medicinal Plants against Methicillin-Resistant Staphylococcus aureus (MRSA) (약용식물의 항생제 내성균주에 대한 항균활성)

  • Ji, Young-Ju;Lee, Ji-Won;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.412-419
    • /
    • 2007
  • In the present study, we investigated antimicrobial activity of the medicinal plants against various strains of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (S. aureus). Among the tested, the plants extracts of Asiasarum heterotropoides var. mandshuricum, Coptidis rhizoma, Reynoutria elliptica Migo., Solidago virga-aurea var. gigantea Miq.seed exhibited significant antimicrobial activities against MRSA KCCM 11812, 40510 and S. aureus ATCC 25923. The methanol extract of Asiasarum heterotropoides var. mandshuricum showed strong antimicrobial activity against MRSA KCCM 11812, 40510 and S. aureus ATCC 25923 at the 5 mg/disc. A synergistic effect was found in combined extracts of Asiasarum heterotropoides var. mandshuricum and Coptidis rhizoma as compared to each extracts alone. The result suggests that medicinal plant extracts can be used as an effective natural antimicrobial agent in food.

Toxins and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus Isolated from Clinical Specimens (임상검체로부터 분리된 methicillin 내성 Staphylococcus aureus의 독소 및 항생제 내성)

  • Baik, Keun-Sik;Ki, Gwang-Seo;Choe, Han-Na;Park, Seong-Chan;Koh, Eun-Cho;Kim, Hyung-Rak;Seong, Chi-Nam
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • Seventy five methicillin- resistant Staphylococcus aureus (MRSA) strains and 24 methicillin- susceptible S. aureus (MSSA) were isolated from clinical specimens obtained from a hospital in Suncheon, Jeonnam province, Korea, from July to December, 2009. Antibiotic resistance was determined using the disc diffusion method. Genes encoding enterotoxin (SE), toxic shock syndrome toxin-1 (TSST-1), exfoliative toxin (ET) and Panton-Valentine leukocidin (PVL) were detected by multiplex PCR-mediated amplification using specific primers. Sixty (80%) MRSA isolates possessed either one or more toxin genes and the most common pattern that coexisted in MRSA was seb, sec, seg, sei and tst (22.7%) followed by coexistence of sec, seg, sei and tst genes (18.7%). Gene pvl encoding leukocidin was not found. Significant correlation between the production of sec, seg, sei and tst genes was found. MRSAs were resistant to erythromycin (89% of the isolates), gentamicin (70.7%), ciprofloxacin (69.3%), clindamycin (61.3%) and tetracycline (58.7%), while MSSAs were susceptible to the antibiotics with the exception of erythromycin. Toxin genes seb, sec and tst were related to the tetracycline resistance of MRSA.

Identification of Methicillin-Resistant Staphylococcus aureus by Polymerase Chain Reaction (중합효소 연쇄반응을 이용한 메치실린 내성균주의 동정)

  • Park, In-Cheol;Kim, Gwang-Su;Park, Myeong-Jin;Lee, Seung-Hun;Hong, Seok-Il;Choe, Tae-Bu
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.460-464
    • /
    • 1999
  • Methicillin-resistant Staphyloccus aureus (MRSA) has been known to be resistant to many kinds of antibiotics and causes a problem of nosnocomial infection since the third generation of cephalosporines has been introduced in the 1980s. As antibiotic sensitivity tests which have been routinely used to detect MRSA in the laboratory depend on the culture conditions such as, pH, temperature, and time, etc., it is difficult to decide in the case of borderline- or low-level of MRSA. Therefore it would be necessary to develope a new method based on the molecular biological technique to overcome these problems. In this study, we extracted DNA from S. aureus and performed polymerase chain reaction (PCR) to amplify mec A gene, encoding penicillin-binding protein 2' (PBP-2'), which is known to confer bacteria resistance to the bacteriostatic action of methicillin. The results were compares with those of minimal inhibitory concentration (MIC) test. When MIC test with oxacillin was performed on the 120 isolates of S. aureus from each patient's specimens, 64 of them were MRSA and 56 of them were methicillin-sensitive Staphylococcus aureus (MSSA). In pus specimen, more precisely, 61.9% (26/42) of MRSA was detected, and 44.2% (19/43), 60% (9/15) and 50% (10/20) of MRSA were detected in sputum, body fluid, and other specimen respectively. When 40 isolates of MRSA and MSSA were tested by PCR method and compares with the results of MIC method, different results were obtained from 1 isolate of MRSA (2.5%) and in 2 isolates of MSSA (5%) suggesting that PCR method should be performed at the same time for more accurate clinical test of MRSA.

  • PDF

Inhibitory effect of SeO2 on cell growth of methicillin-resistant Staphylococcus aureus (SeO2의 메티실린-내성 황색포도상구균에 대한 생육 억제 효과)

  • Han, Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.444-447
    • /
    • 2015
  • This study was carried out to determine the antibacterial activity of $SeO_2$ against pathogenic bacteria, methicillin-resistant Staphylococcus aureus (MRSA). Using the disc diffusion method, $SeO_2$ showed higher antibacterial activity against Gram-positive bacteria than Gram-negative bacteria used in this study. Coccus-form bacteria showed much susceptible to $SeO_2$, compared to bacillus-form bacteria. Compared to antibiotics-susceptible S. aureus, antibiotics used in this study showed lower antibacterial activity against MRSA. As $200-500{\mu}g/disc$ of $SeO_2$ was applied, diameters of clear zone for S. aureus and MRSA were 20-32.7 mm and 13.5-17.9 mm, respectively. For MRSA, minimal inhibitory concentration of $SeO_2$ was $40{\mu}g/ml$. When $SeO_2$ was added in culture broth, cell growth of MRSA was inhibited. These results will be applied to determine antibacterial mechanism of MRSA and other pathogenic microorganisms.

Detection of Inducible Clindamycin Resistance Genes (ermA, ermB, and ermC) in Staphylococcus aureus and Staphylococcus epidermidis

  • Mazloumi, Mohammad Javad;Akbari, Reza;Yousefi, Saber
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.449-457
    • /
    • 2021
  • The aim of the present study was to survey the frequency of inducible and constitutive phenotypes and inducible cross-resistant genes by regulating the methylation of 23S rRNA (ermA, ermB, and ermC) and macrolide efflux-related msrA gene in Staphylococcus aureus and S. epidermidis strains. A total of 172 bacterial isolates (identified based on standard tests), were examined in this study. Antibiotic susceptibility was determined by the disk diffusion method, and all isolates were evaluated with respect to inducible and constitutive phenotypes. The presence of ermA, ermB, ermC, and msrA genes was investigated by a PCR assay. The constitutive resistance phenotypes showed a higher distribution among the isolates. R phenotype was detected more among S. epidermidis isolates (46.25%). ermB, ermC, and msrA genes were detected more in methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) isolates that had R and HD phenotypes (>77% strains). The ermA gene had the lowest frequency among MRSA, MRSE, MSSA, and MSSE strains (<14% isolates). Distribution of inducible resistance genes in MRSA and MRSE strains, and possibly other species, leads to increased constitutive resistance to erythromycin, clindamycin, and other similar antibiotics. Therefore, it can be challenging to treat infections caused by these resistant strains.

Combined antimicrobial effect of two peptide nucleic acids against Staphylococcus aureus and S. pseudintermedius veterinary isolates

  • Se Kye Kim;Jun Bong Lee;Hyung Tae Lee;Jang Won Yoon
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.12.1-12.10
    • /
    • 2024
  • Background: Staphylococcus aureus and S. pseudintermedius are the major etiological agents of staphylococcal infections in humans, livestock, and companion animals. The misuse of antimicrobial drugs has led to the emergence of antimicrobial-resistant Staphylococcus spp., including methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. pseudintermedius (MRSP). One novel therapeutic approach against MRSA and MRSP is a peptide nucleic acid (PNA) that can bind to the target nucleotide strands and block expression. Previously, two PNAs conjugated with cell-penetrating peptides (P-PNAs), antisense PNA (ASP)-cmk and ASP-deoD, targeting two essential genes in S. aureus, were constructed, and their antibacterial activities were analyzed. Objectives: This study analyzed the combined antibacterial effects of P-PNAs on S. aureus and S. pseudintermedius clinical isolates. Methods: S. aureus ATCC 29740 cells were treated simultaneously with serially diluted ASP-cmk and ASP-deoD, and the minimal inhibitory concentrations (MICs) were measured. The combined P-PNA mixture was then treated with S. aureus and S. pseudintermedius veterinary isolates at the determined MIC, and the antibacterial effect was examined. Results: The combined treatment of two P-PNAs showed higher antibacterial activity than the individual treatments. The MICs of two individual P-PNAs were 20 and 25 µM, whereas that of the combined treatment was 10 µM. The application of a combined treatment to clinical Staphylococcus spp. revealed S. aureus isolates to be resistant to P-PNAs and S. pseudintermedius isolates to be susceptible. Conclusions: These observations highlight the complexity of designing ASPs with high efficacy for potential applications in treating staphylococcal infections in humans and animals.

Characterization and Frequency of Vancomycin Resistance in Staphylococcus aureus Isolated in Korea (국내에서 분리된 포도상구균의 Vancomycin 내성빈도 및 특성)

  • 박성언;김종배
    • Biomedical Science Letters
    • /
    • v.6 no.3
    • /
    • pp.201-208
    • /
    • 2000
  • The vancomycin, one of the family of glycopeptide antibiotics, inhibits the synthesis of bacterial cell wall peptidoglycan and has been widely used against gram-positive bacterial infections, especially for a treatment of methicillin resistant S. aureus infection. However, clinical isolate which was intermediately resistant to vancomycin (Mu50: MIC 8 $\mu\textrm{g}$/ml) was isolated in recent years. In this study we performed vancomycin susceptibility test with the increment method and population analysis with clinical isolates S. aureus. Also we did several kinds of tests with three selected isolates (s129: MIC 7 $\mu\textrm{g}$/ml, s134: MIC 7 $\mu\textrm{g}$/ml, s135: MIC 8 $\mu\textrm{g}$/ml) to find out possible mechanism of vancomycin resistance. As a result, the prevalence of vancomycin resistant S. aureus isolates among S. aureus strains resistant to methicillin was 23.3% (25/107). The vancomycin resistances of isolated strains of S. aureus were between those of Mu5O and Mu3 strains. By PCR analysis, none of the isolates with decreased vancomycin susceptibility contained known vancomycin resistant genes such as vanA, vanB, vanC1, vanC2, and vanH. Major bands of 81 kDa, 58 kDa, 33 kDa, 28 kDa were demonstrable in whole cell lysates by SDS-PAGE from all three isolates as well as reference strains. And especially,45 kDa protein was overproduced in Mu50 strains. Among them increased production of NAD$^{+}$-linked-$_{D}$-lactate dehydrogenase (dnLDH) were detected from one clinical strain (s135) and Mu5O strain. From these data, we suggest that the mechanism of vancomycin resistance in these isolates are distinct from that in enterococci.

  • PDF