DOI QR코드

DOI QR Code

Combined antimicrobial effect of two peptide nucleic acids against Staphylococcus aureus and S. pseudintermedius veterinary isolates

  • Se Kye Kim (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Jun Bong Lee (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Hyung Tae Lee (Quratis Inc.) ;
  • Jang Won Yoon (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University)
  • Received : 2023.10.24
  • Accepted : 2023.12.17
  • Published : 2024.01.31

Abstract

Background: Staphylococcus aureus and S. pseudintermedius are the major etiological agents of staphylococcal infections in humans, livestock, and companion animals. The misuse of antimicrobial drugs has led to the emergence of antimicrobial-resistant Staphylococcus spp., including methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. pseudintermedius (MRSP). One novel therapeutic approach against MRSA and MRSP is a peptide nucleic acid (PNA) that can bind to the target nucleotide strands and block expression. Previously, two PNAs conjugated with cell-penetrating peptides (P-PNAs), antisense PNA (ASP)-cmk and ASP-deoD, targeting two essential genes in S. aureus, were constructed, and their antibacterial activities were analyzed. Objectives: This study analyzed the combined antibacterial effects of P-PNAs on S. aureus and S. pseudintermedius clinical isolates. Methods: S. aureus ATCC 29740 cells were treated simultaneously with serially diluted ASP-cmk and ASP-deoD, and the minimal inhibitory concentrations (MICs) were measured. The combined P-PNA mixture was then treated with S. aureus and S. pseudintermedius veterinary isolates at the determined MIC, and the antibacterial effect was examined. Results: The combined treatment of two P-PNAs showed higher antibacterial activity than the individual treatments. The MICs of two individual P-PNAs were 20 and 25 µM, whereas that of the combined treatment was 10 µM. The application of a combined treatment to clinical Staphylococcus spp. revealed S. aureus isolates to be resistant to P-PNAs and S. pseudintermedius isolates to be susceptible. Conclusions: These observations highlight the complexity of designing ASPs with high efficacy for potential applications in treating staphylococcal infections in humans and animals.

Keywords

Acknowledgement

The S. aureus and S. pseudintermedius veterinary isolates used in this study were kind gifts from Prof. Soo Jin Yang in the College of Veterinary Medicine, Seoul National University.

References

  1. Bannoehr J, Guardabassi L. Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet Dermatol. 2012;23(4):253-266, e51-e52.
  2. Rasigade JP, Dumitrescu O, Lina G. New epidemiology of Staphylococcus aureus infections. Clin Microbiol Infect. 2014;20(7):587-588. https://doi.org/10.1111/1469-0691.12718
  3. Guardabassi L, Larsen J, Weese JS, Butaye P, Battisti A, Kluytmans J, et al. Public health impact and antimicrobial selection of meticillin-resistant staphylococci in animals. J Glob Antimicrob Resist. 2013;1(2):55-62. https://doi.org/10.1016/j.jgar.2013.03.011
  4. Walther B, Tedin K, Lubke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol. 2017;200:71-78. https://doi.org/10.1016/j.vetmic.2016.05.017
  5. Arnold BJ, Huang IT, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20(4):206-218. https://doi.org/10.1038/s41579-021-00650-4
  6. Frosini SM, Bond R, McCarthy AJ, Feudi C, Schwarz S, Lindsay JA, et al. Genes on the move: in vitro transduction of antimicrobial resistance genes between human and canine staphylococcal pathogens. Microorganisms. 2020;8(12):2031.
  7. Tsubakishita S, Kuwahara-Arai K, Sasaki T, Hiramatsu K. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother. 2010;54(10):4352-4359. https://doi.org/10.1128/AAC.00356-10
  8. Saarbach J, Sabale PM, Winssinger N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol. 2019;52:112-124. https://doi.org/10.1016/j.cbpa.2019.06.006
  9. Dean DA. Peptide nucleic acids: versatile tools for gene therapy strategies. Adv Drug Deliv Rev. 2000;44(2-3):81-95. https://doi.org/10.1016/S0169-409X(00)00087-9
  10. Ghosal A. Peptide nucleic acid antisense oligomers open an avenue for developing novel antibacterial molecules. J Infect Dev Ctries. 2017;11(2):212-214. https://doi.org/10.3855/jidc.9159
  11. Lee HT, Kim SK, Yoon JW. Antisense peptide nucleic acids as a potential anti-infective agent. J Microbiol. 2019;57(6):423-430. https://doi.org/10.1007/s12275-019-8635-4
  12. Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE. Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol. 2001;19(4):360-364. https://doi.org/10.1038/86753
  13. Yavari N, Goltermann L, Nielsen PE. Uptake, stability, and activity of antisense anti-acpP PNA-peptide conjugates in Escherichia coli and the role of SbmA. ACS Chem Biol. 2021;16(3):471-479. https://doi.org/10.1021/acschembio.0c00822
  14. Goh S, Loeffler A, Lloyd DH, Nair SP, Good L. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol. 2015;15(1):262.
  15. Bai H, Sang G, You Y, Xue X, Zhou Y, Hou Z, et al. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One. 2012;7(1):e29886.
  16. Lee HT, Kim SK, Lee JB, Yoon JW. A novel peptide nucleic acid against the cytidine monophosphate kinase of S. aureus inhibits staphylococcal infection in vivo. Mol Ther Nucleic Acids. 2019;18:245-252. https://doi.org/10.1016/j.omtn.2019.08.021
  17. Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol Biosyst. 2010;6(12):2482-2489. https://doi.org/10.1039/c0mb00001a
  18. Newbould FH. Antibiotic treatment of experimental Staphylococcus aureus infections of the bovine mammary gland. Can J Comp Med. 1974;38(4):411-416.
  19. World Health Organization. 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. Geneva: World Health Organization; 2022.
  20. Ko KS, Lee JY, Song JH, Baek JY, Oh WS, Chun J, et al. Screening of essential genes in Staphylococcus aureus N315 using comparative genomics and allelic replacement mutagenesis. J Microbiol Biotechnol. 2006;16(4):623-632.
  21. Papi C, Gasparello J, Zurlo M, Manicardi A, Corradini R, Cabrini G, et al. Combined treatment of bronchial epithelial Calu-3 cells with peptide nucleic acids targeting miR-145-5p and miR-101-3p: synergistic enhancement of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Gene. Int J Mol Sci. 2022;23(16):9348.
  22. Zurlo M, Romagnoli R, Oliva P, Gasparello J, Finotti A, Gambari R. Synergistic effects of the combined treatment of U251 and T98G glioma cells with an anti-tubulin tetrahydrothieno[2,3-c]pyridine derivative and a peptide nucleic acid targeting miR-221-3p. Int J Oncol. 2021;59(2):61.
  23. Patenge N, Pappesch R, Krawack F, Walda C, Mraheil MA, Jacob A, et al. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol Ther Nucleic Acids. 2013;2(11):e132.
  24. Ballhausen B, Jung P, Kriegeskorte A, Makgotlho PE, Ruffing U, von Muller L, et al. LA-MRSA CC398 differ from classical community acquired-MRSA and hospital acquired-MRSA lineages: functional analysis of infection and colonization processes. Int J Med Microbiol. 2014;304(7):777-786. https://doi.org/10.1016/j.ijmm.2014.06.006
  25. Busche T, Hillion M, Van Loi V, Berg D, Walther B, Semmler T, et al. Comparative secretome analyses of human and zoonotic Staphylococcus aureus isolates CC8, CC22, and CC398. Mol Cell Proteomics. 2018;17(12):2412-2433. https://doi.org/10.1074/mcp.RA118.001036
  26. Duval BD, Mathew A, Satola SW, Shafer WM. Altered growth, pigmentation, and antimicrobial susceptibility properties of Staphylococcus aureus due to loss of the major cold shock gene cspB. Antimicrob Agents Chemother. 2010;54(6):2283-2290. https://doi.org/10.1128/AAC.01786-09
  27. Nikolic P, Mudgil P. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms. 2023;11(2):259.
  28. Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist. 2019;12:2151-2160. https://doi.org/10.2147/IDR.S193649
  29. Nikolic P, Mudgil P, Harman DG, Whitehall J. Untargeted lipidomic differences between clinical strains of methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Infect Dis (Lond). 2022;54(7):497-507. https://doi.org/10.1080/23744235.2022.2049863
  30. Kumariya R, Sood SK, Rajput YS, Saini N, Garsa AK. Increased membrane surface positive charge and altered membrane fluidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis. Biochim Biophys Acta. 2015;1848(6):1367-1375. https://doi.org/10.1016/j.bbamem.2015.03.007
  31. Goltermann L, Zhang M, Ebbensgaard AE, Fiodorovaite M, Yavari N, Lobner-Olesen A, et al. Effects of LPS composition in Escherichia coli on antibacterial activity and bacterial uptake of antisense peptide-PNA conjugates. Front Microbiol. 2022;13:877377.
  32. Mohamed MF, Hammac GK, Guptill L, Seleem MN. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs. PLoS One. 2014;9(12):e116259.
  33. Lozano C, Rezusta A, Ferrer I, Perez-Laguna V, Zarazaga M, Ruiz-Ripa L, et al. Staphylococcus pseudintermedius human infection cases in Spain: dog-to-human transmission. Vector Borne Zoonotic Dis. 2017;17(4):268-270. https://doi.org/10.1089/vbz.2016.2048
  34. Somayaji R, Priyantha MA, Rubin JE, Church D. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: report of 24 cases. Diagn Microbiol Infect Dis. 2016;85(4):471-476. https://doi.org/10.1016/j.diagmicrobio.2016.05.008
  35. Bhooshan S, Negi V, Khatri PK. Staphylococcus pseudintermedius: an undocumented, emerging pathogen in humans. GMS Hyg Infect Control. 2020;15:Doc32.