• Title/Summary/Keyword: Methane Reforming

Search Result 237, Processing Time 0.024 seconds

Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells

  • Roh, Hyun-Seog;Jun, Ki-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.153-156
    • /
    • 2009
  • Low temperature methane steam reforming to produce $H_2$ for fuel cells has been calculated thermodynamically considering both heat loss of the reformer and unreacted $H_2$ in fuel cell stack. According to the thermodynamic equilibrium analysis, it is possible to operate methane steam reforming at low temperatures. A scheme for the low temperature methane steam reforming to produce $H_2$ for fuel cells by burning both unconverted $CH_4$ and $H_2$ to supply the heat for steam methane reforming has been proposed. The calculated value of the heat balance temperature is strongly dependent upon the amount of unreacted $H_2$ and heat loss of the reformer. If unreacted $H_2$ increases, less methane is required because unreacted $H_2$ can be burned to supply the heat. As a consequence, it is suitable to increase the reaction temperature for getting higher $CH_4$ conversion and more $H_2$ for fuel cell stack. If heat loss increases from the reformer, it is necessary to supply more heat for the endothermic methane steam reforming reaction from burning unconverted $CH_4$, resulting in decreasing the reforming temperature. Experimentally, it has been confirmed that low temperature methane steam reforming is possible with stable activity.

Study on dry reforming and partial oxidation of methane. (대기압 플라즈마를 이용한 메탄의 건식개질과 부분산화반응의 비교)

  • Hwang, Na-Kyung;Cha, Min-Suk;Lee, Dae-Hoon;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2892-2897
    • /
    • 2008
  • Plasma techniques have been proposed to generate a hydrogen enrich gas to investigate a feasibility of plasma techniques on a fuel reforming, we considered a dry reforming and a partial oxidation with methane in the atmospheric pressure. For these experiments, we employed an arc jet plasma reactor. The effects of input power and oxidizer in each process were investigated by product analysis, including carbon monoxide, hydrogen, ethylene, propane, and acetylene as well as methane and carbon dioxide. In both processes, input electrical power activated the reactions significantly. The increased ratio of the carbon dioxide to methane in the dry reforming doesn't affect to a methane conversion, whereas increased ratio of oxidizer to methane in the partial oxidation was very effective for the reaction. Moreover, for a simultaneous treatment of methane and carbon dioxide, a feasibility of a dry reforming combined with partial oxidation also has been investigated.

  • PDF

Methane Reforming Using Atmospheric Plasma Source (대기압 플라즈마를 이용한 메탄 개질 반응)

  • Lee, Dae-Hoon;Kim, Kwan-Tae;Cha, Min-Suk;Song, Young-Hoon;Kim, Dong-Hyeon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.64-68
    • /
    • 2005
  • Methane reforming processes to obtain hydrogen were investigated experimentally by using atmospheric plasma source. Among possible reforming processes, such as a $CO_2$ reforming(dry reforming), a partial oxidation (POx), a steam reforming(SR), and a steam reforming with oxygen(SRO or auto-thermal reforming), partial oxidation and the steam reforming with oxygen were considered. We choose a rotating arc plasma as an atmospheric plasma source, since it shows the best performances in our preliminary tests in terms of a methane conversion, a hydrogen production, and a power consumption. Then, the effects of a feeding flow-rate, an electrical power input to a plasma reaction, an $O_2/C$ ratio and a steam to carbon ratio in the case of SRO on the reforming characteristics were observed systematically. As results, at a certain condition almost 100% of methane conversion was obtained and we could achieve the same hydrogen production rate by consuming a half of electrical power which was used by the best results for other researchers.

  • PDF

Hydrogen Production from Methane Reforming Reactions over Ni/MgO Catalyst

  • Wen Sheng Dong;No, Hyeon Seok;Zhong Wen Liu;Jeon, Gi Won;Park, Sang Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1323-1327
    • /
    • 2001
  • The catalyst Ni/MgO (Ni : 15 wt%) has been applied to methane reforming reactions, such as steam reforming of methane (SRM), partial oxidation of methane (POM), and oxy-steam reforming of methane (OSRM). It showed high activity and good stability in all the reforming reactions. Especially, it exhibited stable catalytic performance even in stoichiometric SRM (H2O/CH4 = 1). From TPR and H2 pulse chemisorption results, a strong interaction between NiO and MgO results in a high dispersion of Ni crystallite. Pulse reaction results revealed that both CH4 and O2 are activated on the surface of metallic Ni over the catalyst, and then surface carbon species react with adsorbed oxygen to produce CO.

Steam Reforming of Methane in a Solar Concentrated Receiver Reactor (집광된 태양열을 반응기에서의 메탄 수증기개질 연구)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.172-175
    • /
    • 2006
  • Steam reforming of methane using Xe-arc solar simulator was studied for converting solar radiation into energy foam that one can readily utilize. The Xe-arc lamp produce a spectrum similar to that of the sun. SiC ceramic foam, resist high temp.$(>900^{\circ}C)$, is used to catalytically active foam absorber, and to support of reforming catalyst. The catalyst on the surface of foam were directly irradiated with solar simulated xe-light in order to carry out the steam reforming of methane. The reactor was made of stainless steel and quartz window was located on a place of the xe-light irradiation and temperature was controlled using K-type thermocouple in contact with catalyst located inside the reactor. The result show that a possibility of solar reforming using catalytically active foam absorber is exist.

  • PDF

The Study on Methane Reforming by CO2 and Steam for Manufacture of Synthesis Gas (합성가스 제조를 위한 CO2/수증기에 의한 메탄 개질반응 연구)

  • Cho, Wonihl;Lee, Seung-Ho;Mo, Yong-Gi;Sin, Donggeun;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2004
  • The methane reforming with $CO_2$ and steam for manufacture of synthesis gas over $Ni/ZrO_2$ catalyst was investigated. Mixed reforming carried out $CO_2$ dry reforming with $O_2$ and steam for development of DME process in pilot plant. To improve a catalyst deactivation by coke formation, the mixed reforming added carbon dioxide and steam as a oxidizer of the methane reforming was suggested. The result of experiments over commercial catalyst in $CO_2$ dry reforming has shown that the catalyst activity decrease rapidly after 20 hours. In case of $NiO-MgO/Al_2O_3$ catalyst, the deactivation of 20 percent after 30 hours was occurred. The activity of Ni/C catalyst still was not decreased dramatically after 100 hours. The effect of $H_2$ reforming with steam over $Ni/CO_2$ catalyst obtained the optimal conversion of methane and carbon dioxide, and could be produced synthesis gas at ratio of $H_2/CO$ under 1.5.

Study on Characteristic of Methane Reforming and Production of Hydrogen using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄의 개질 특성 및 수소 생산에 관한 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.942-948
    • /
    • 2007
  • Popular techniques for producing hydrogen by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and fur application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC GlidArc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Results were obtained for methane and hydrogen yields and intermediate products. The system used in this research consisted of 3 electrodes and an AC power source. In this study, air was added fur the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 32.6% and 35.2% respectively.

A Study on the Suppression of Carbon Deposition in Solid Oxide Fuel Cells Through Methane Internal Reforming (메탄 내부개질 반응을 통한 고체산화물 연료전지의 탄소침적 억제에 관한 연구)

  • Kang, Yun-Hyeok;Lim, Sung-Kwang;Yoo, Yung-Sung;Park, Jin-Woo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.473-481
    • /
    • 2007
  • Compared to other types of fuel cells, SOFC has advantages like a wide output range and the direct use of hydrocarbon fuel without the process of external reforming. Particularly because the direct use of fuel without reforming reaction is closely linked to overall system efficiency, it is a very attractive advantage. We tried the operation with methane. However, although methane has a small number of carbons compared to other hydrocarbon fuels, our experiment found the deposition of carbon on the surface of the SOFC electrode. To overcome the problem, we tried the operation through activating internal reforming. The reason that internal reforming was possible was that SOFC runs at high temperature compared to other fuel cells and its electrode is made of Ni, which functions as a catalyst favorable for steam reforming.

Hydrogen Gas Production from Methane Reforming Using Oxygen Enriched Compression Ignition Engine (산소부화 압축착화기관을 이용한 메탄으로부터 수소 생산)

  • Lim, Mun-Sup;Hong, Sung-In;Hong, Myung-Seok;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.557-562
    • /
    • 2007
  • The purpose of this paper is to investigate the reforming characteristics and maximum operating condition for the hydrogen production by methane reforming using the compression ignition engine induced partial oxidation. An dedicated compression engine used for methane reforming was decided operating range. The partial oxidation reforming was investigated with oxygen enrichment which can improve hydrogen production, compared to general reforming. Parametric screening studies were achieved as $O_2/CH_4$ ratio, total flow rate, and intake temperature. When the variations of $O_2/CH_4$ ratio, total flow rate, and intake temperature were 1.24, 208.4 L/min, and $400^{\circ}C$, respectively, the maximum operating conditions were produced hydrogen and carbon monoxide. Under the condition mentioned above, synthetic gas were $H_2\;22.77{\sim}29.22%,\;CO\;21.11{\sim}23.59%$.

Operating Characteristics of LNG burner for Steam Reforming of Natural Gas (천연가스 수증기개질 반응용 LNG 버너의 운전 특성)

  • Shin, Jang-Sik;Park, Jong-Won;Yang, Hye-Kyong;Lee, Seung-Young;Song, Bong-Hyun;Shin, Seock-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.477-480
    • /
    • 2006
  • In this study, we investigated operating characteristics of the LNG burner for steam methane reforming. The developed LNG burner and catalytic reactor to supply an efficient heat transfer between the combustion gas and catalyst got a good response of various operating load within 5-7 minute and high efficiency for steam methane reforming as a conversion of methane over 90%. We calculated the volume of catalyst for $1Nm^3/hr$ steam LNG reforming as $211cc/(Nm^3/hr\;H_2)$ and got the operating condition and design data of the burner and steam reforming for LNG.

  • PDF