Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.1.153

Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells  

Roh, Hyun-Seog (Department of Environmental Engineering, Yonsei University)
Jun, Ki-Won (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Abstract
Low temperature methane steam reforming to produce $H_2$ for fuel cells has been calculated thermodynamically considering both heat loss of the reformer and unreacted $H_2$ in fuel cell stack. According to the thermodynamic equilibrium analysis, it is possible to operate methane steam reforming at low temperatures. A scheme for the low temperature methane steam reforming to produce $H_2$ for fuel cells by burning both unconverted $CH_4$ and $H_2$ to supply the heat for steam methane reforming has been proposed. The calculated value of the heat balance temperature is strongly dependent upon the amount of unreacted $H_2$ and heat loss of the reformer. If unreacted $H_2$ increases, less methane is required because unreacted $H_2$ can be burned to supply the heat. As a consequence, it is suitable to increase the reaction temperature for getting higher $CH_4$ conversion and more $H_2$ for fuel cell stack. If heat loss increases from the reformer, it is necessary to supply more heat for the endothermic methane steam reforming reaction from burning unconverted $CH_4$, resulting in decreasing the reforming temperature. Experimentally, it has been confirmed that low temperature methane steam reforming is possible with stable activity.
Keywords
Low temperature; Hydrogen production; Methane steam reforming; Fuel cells;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344, 319   DOI
2 Lee, D. K.; Baek, I. H.; Yoon, W. L. Int. J. Hydrogen Energy 2006, 31, 649.   DOI   ScienceOn
3 Chin, Y.-H.; King, D. L.; Roh, H.-S.; Wang, Y.; Heald, S. M. J. Catal. 2006, 244, 153   DOI   ScienceOn
4 Roh, H.-S.; Potdar, H. S.; Jun, K.-W.; Kim, J.-W.; Oh, Y.-S. Appl. Catal. A 2004, 276, 231   DOI   ScienceOn
5 Roh, H.-S.; Potdar, H. S.; Jun, K.-W. Catal. Today 2004, 93-95, 39   DOI
6 Liu, Z.-W.; Jun, K.-W.; Roh, H.-S.; Baek, S.-C.; Park, S.-E.; Song, T.-Y. J. Mol. Catal. A 2002, 189, 283   DOI   ScienceOn
7 Liu, Z.-W.; Jun, K.-W.; Roh, H.-S.; Park, S.-E. J. Power Sources 2002, 111, 283   DOI   ScienceOn
8 Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 1166   DOI   ScienceOn
9 Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Catal. Lett. 2002, 81, 147   DOI   ScienceOn
10 Roh, H.-S.; Koo, K. Y.; Jeong, J. H.; Seo, Y. T.; Seo, D. J.; Seo, Y.-S.; Yoon, W. L.; Park, S. B. Catal. Lett. 2007, 117, 85   DOI
11 Koo, K. Y.; Roh, H.-S.; Seo, Y. T.; Seo, D. J.; Yoon, W. L.; Park, S. B. Appl. Catal. A 2008, 340, 183   DOI   ScienceOn
12 Koo, K. Y.; Roh, H.-S.; Seo, Y. T.; Seo, D. J.; Yoon, W. L.; Park, S. B. Int. J. Hydrogen Energy 2008, 33, 2036   DOI   ScienceOn
13 Yamamoto, O. Electrochimica Acta 2000, 45, 2423   DOI   ScienceOn
14 Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5   DOI   ScienceOn
15 Oh, Y.-S.; Roh, H.-S.; Jun, K.-W.; Baek, Y.-S. Int. J. Hydrogen Energy 2003, 28, 1387   DOI   ScienceOn
16 Roh, H.-S.; Jun, K.-W.; Park, S.-E. Appl. Catal. A 2003, 251, 275   DOI   ScienceOn
17 Potdar, H. S.; Roh, H.-S.; Jun, K.-W.; Ji, M.; Liu, Z.-W. Catal. Lett. 2002, 84, 95   DOI   ScienceOn
18 Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 799   DOI   ScienceOn
19 Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 793   DOI   ScienceOn
20 Dong, W.-S.; Roh, H.-S.; Liu, Z.-W.; Jun, K.-W.; Park, S.-E. Bull. Korean Chem. Soc. 2001, 22, 1323
21 Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Park, S.-E.; Baek, Y.-S. Catal. Lett. 2001, 74, 31   DOI   ScienceOn
22 Choudhary, T. V.; Goodman, D. W. J. Mol. Catal. A 2000, 163, 9   DOI   ScienceOn
23 Rostrup-Nielsen, J. R. In Catalysis Science and Technology; Anderson, J. R.; Boudart, M., Eds.; Springer: Berlin, 1984; Vol. 5, p 91
24 Roh, H.-S.; Dong, W.-S.; Jun, K.-W.; Liu, Z.-W.; Park, S.-E.; Oh, Y.-S. Bull. Korean Chem. Soc. 2002, 23, 669   DOI
25 Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Chang, J.-S.; Park, S.-E.; Joe, Y.-I. J. Mol. Catal. A 2002, 181, 137   DOI   ScienceOn
26 Dong, W.-S.; Roh, H.-S.; Jun, K.-W.; Park, S.-E.; Oh, Y.-S. Appl. Catal. A 2002, 226, 63   DOI   ScienceOn
27 Pena, M. A.; Gomez, J. P.; Fierro, J. L. G. Appl. Catal. A 1996, 144, 7   DOI   ScienceOn
28 Bradford, M. C. J.; Vannice, M. A. Catal. Rev.-Sci. Eng. 1999, 41, 1   DOI   ScienceOn
29 Jun, K.-W.; Roh, H.-S.; Chary, K. V. R. Catal. Surv. Asia 2007, 11, 97   DOI   ScienceOn
30 Jeong, J. H.; Lee, J. W.; Seo, D. J.; Seo, Y. T.; Yoon, W. L.; Lee, D. K.; Kim, D. H. Appl. Catal. A 2006, 302, 151   DOI   ScienceOn