• Title/Summary/Keyword: Meteorological environment

Search Result 1,159, Processing Time 0.034 seconds

Assessment on the Variability of Total Ozone for Climate Change over Korea

  • Moon, Yun-Seob;Shin, Hye-Jung;Oh, Sung-Nam;Park, Byoung-Cheol;Chung, Hyo-Sang;Kim, Yoo-Keun;Kim, Seong-Kyoun
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • Ozone is one of the most significant atmospheric constituents controlling the intensity of solar UV-B irradiance (280 to 320nm), and the decrease of the total ozone amount supported by ozonesondes and spectrometers will result in the increase of UV-B irradiance at the earth's surface. For example, 1% decrease in stratospheric ozone is expected to yield a 2-3% increase in UV-B irradiance and in the incidence of skin cancer. (omitted)

  • PDF

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Variations in Root and Tuber Crops Production due to Climate Change

  • Hwang, Sung-Eun;Chon, Chun-Hwang;Park, Geon-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Climate change which occuring the recent abrupt fluctuations in meteorological and climatological elements is bound, brings about more significant impacts and changes in human life One of the most important problems due to the impacts of climate change tends to have been decreased the food production, which is expected to make crop resources more and more important. Accordingly, agricultural meteorology should also become more important. In this study, the correlation between meteorological elements and root and tuber crops (potatoes and sweet potatoes), which are emergency crops, and meteorological elements were analyzed, and the impacts of climate changes on the production of such crops were examined. This study concludes that agriculture and food resources are important, and suggests that we should prepare for changes in crops, the weaponization of food, and the lack of water resources in the future. The meteorological element and crops element correlation analysis results. Sweet potatoes, which are negatively influenced by climate change, need breeding improvement and cultivation method development, and potatoes, which are positively influenced by climate change, require preparations for climate changes that exceed the climatic limit. The variations of agricultural production contributed to changes in crop production. Therefore, the importance of agricultural meteorology and the food crop industry should be fully recognized to prepare for climate change.

Indication of Photochemical Air Pollution in the Greater Seoul Area, 1990 to 1995 (1990~1995 서울ㆍ수도권 지역의 광화학 오염현상)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • Status of photochemical air pollution in the Greater Seoul Area (GSA) between 1990 and 1995 was assessed in terms of frequency distributions, number of days exceeding standards, average concentration and meteorological effects. In Seoul compared with other areas in Korea, daily maximum concentration was higher but average concentration was not so high due to lower daily minimum from April to October. The top 5th percentile was high especially in summer season. Average number of days exceeding 100 ppb at monitoring stations in GSA was highest in 1994, the hottest year, but it was only 4 days a year. Mean meteorological pattern of high ozone days could be summarized as low wind speeds, high temperatures, strong solar radiation, and low precipitation. Westerlies were more frequent on high ozone days and at Pangi station located in the eastside of GSA, both number of high ozone days and average concentration were high. Effect of precursor transport on the rise of ozone concentration was, however, not consistently important on the whole in GSA.

  • PDF

Seasonal Variations of $SO_2$Dry Deposition Velocity Obtained by Sonic Anemometer-Thermometer (초음파 풍속온도계를 이용한 $SO_2$건성침착속도의 계절변화 특징)

  • 이종범;박세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.465-478
    • /
    • 1998
  • In this study, seasonal variations of the dry deposition velocity and deposition flux for the sulfur dioxide were analysed. The field observation was performed during one year (from November 1, 1995 to October 31, 1996) in Chunchon basin. The turbulence data were measured by 3-dimensional sonic anemometer/thermometer, and were estimated by mean meteorological data obtained at two heights (2.5 m and 10 m) of meteorological tower. Also, the estimation methods were evaluated by comparing the turbulence data. The results showed that the estimated dry deposition velocity and turbulence parameter such as uc and sensible heat flux using mean meteorological data were relatively similar to the sonic measurements, but all showed somewhat large differences. The dry deposition velocity was large in summer and small in winter mainly due to canopy resistance (rc). The major factor which affects diurnal variation of the velocity was aerodynamic resistance (rw). The SO2 dry deposition flux was large in winter and small in summer in Chunchon.

  • PDF

Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea (자기회귀오차모형을 이용한 평택시 PM10 농도 분석)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.358-366
    • /
    • 2011
  • The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.

Hydrogen Peroxide Concentrations in Air in Seoul (서울시 대기 중 $H_2O_2$의 농도)

  • 강충민;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2000
  • Gas-phase hydrogen peroxide(H2O2) concentrations were measured to investigate it's distribution in the ambient air in downtown Seoul(Kwanghwamum and Mullae-dong). These measurements were made during four season, from April 30, 1998 to January 29, 1999, using Cold Trap and HPLC. Measurements were also made of other photochemical oxidants and trace gases(O3, NO2, CO and SO2) and meteorological parameters(relative humidity, temperature, solar radiation and wind speed). The mean of all observations was 0.10 ppbv and the range measured was below the level of detection(>0.01 ppbv) to 0.47ppbv. The higher seasonal mean concentrations showed during the summer(0.21 ppbv) and concentrations of H2O2 showed a diurnal variation with maximum concentrations in the afternoon(12:30∼14:00). The results from the corrrelation analysis showed that the concentration of gaseous H2O2 is strongly dependent on the other air pollutants(NO2, CO and O3) and meteorological parameters(relative humidity, temperature and solar radiation.)

  • PDF

Software approach towards understanding meteorological data for environmental monitoring and assessment of peninsular Malaysia

  • Quadri, Sayed Abulhasan;Sidek, Othman;Jafar, Hadi;binti Amran, Nur Amira;bt Zabah, Ummi Nurulhaiza;bin Abdullah, Azizul
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.87-106
    • /
    • 2014
  • The concern for the global environment ensues researchers from various disciplines to work in collaboration to tackle with the issues of sustainability and environmental conservation for well-being of the people. In this study, we have selected and focused on few basic environment-effecting factors such as temperature, humidity, carbon dioxide and oxygen concentration level and referred them as meteorological data. In this paper, we present the development of our own customized hardware setup, environmental monitoring device (EMD) to obtain the data. Utilizing the relationship among these basic parameters, represented in the form of formulas and equations, we tried to encode them using Matlab programming. Data visualization is achieved by plotting the graphs of basic parameters obtained from EMD as well for the derivatives using Matlab programs.

Statistical Analysis of the Meteorological Elements for Ozone and Development of the Simplified Model for Ozone Concentration (오존 농도에 영향을 미치는 주 기상요소의 도출 및 예측모형 수립)

  • 전의찬;우정헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.257-266
    • /
    • 1999
  • In order to analyze the effect of meteorological elements on ozone concentration, we carried out cross-correlation of the elements with ozone concentraton, and time series analysis on them. As a result, it revealed that temperature, wind speed and humidity are not independent variables with ozone concentrations, and also, solar radiation and mixing height are the major elements that affect them. We developed models for ozone with solar radiation and mixing height as dependent variables to verify the effect of major meteorological elements. The predicted ozone concentration has strong correlation coefficients, So, We could conclude that we can predict ozone concentreation only with solar raidation and mixing height as dependents.

  • PDF

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.