Browse > Article
http://dx.doi.org/10.5572/KOSAE.2011.27.3.358

Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea  

Lee, Hoon-Ja (Department of Information Statistics, Pyeongtaek University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.27, no.3, 2011 , pp. 358-366 More about this Journal
Abstract
The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.
Keywords
Autoregressive error (ARE) model; Explanatory variables; Meteorological variables; Pollution variables; PM10 concentration; Pyeongtaek City;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Wise, E.K. and A.C. Comrie (2005): Meteorologically adjusted urban air qualty trends in the Southwestern United States, Atmospheric Environment, 39, 2969-2980.   DOI   ScienceOn
2 Chung, Y.S. and J.S. Chung (1991) On surface ozone observed in the Seoul metropolitan area during 1989 and 1990, J. KAPRA, 7(3), 169-179.   과학기술학회마을
3 Cobourn, W.G. (2010) An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations, Atmospheric Environment, 44, 3015-3023.   DOI   ScienceOn
4 Hubbard, M. and W. Cobourn (1998) Development of a regression model to forecast ground-level ozone concentration in Louisville, KY, Atmospheric Environment, 32, 2637-2647.   DOI   ScienceOn
5 Kim, S.C. and S.Y. Joh (2005) Derivation of new box model to analyze the air pollution trends in a metropolitian area, J. Korean Soc. Atmos. Environ., 21(3), 377-397.
6 Kim, Y.P. (2006) Air pollution in Seoul caused by aerosols, J. Korean Soc. Atmos. Environ., 22(5), 535-553.   과학기술학회마을
7 Koo, Y.S., H.Y. Yun, H.Y. Kwon, and S.H. Yu (2010) A development of PM10 forecasting system, J. Korean Soc. Atmos. Environ., 26(6), 666-682.   과학기술학회마을   DOI   ScienceOn
8 Lee, J.Y., B.J. Kong, J.S. Han and M.D. Lee (2008) Long term analysis of PM10 concentration in Seoul using KZ filter, J. Korean Soc. Atmos. Environ., 24, 63-71.   DOI   ScienceOn
9 Lee, Y.S., H.G. Kim, J.S. Park, and H.K. Kim (2006) A study on statistical forecasting models of PM10 in Pohang region by the variable transformation, J. Korean Soc. Atmos. Environ., 22(5), 614-626.   과학기술학회마을
10 Perez, P. and J. Reyes (2006) An integrated neural network model for PM10 forecasting, Atmospheric Environment, 40, 2845-2851.   DOI   ScienceOn
11 Brunelli, U., V. Piazza, L. Pignato, F. Sorbello, and S. Vitabile (2007) Two-days ahead prediction of daily maximum concentrations of $SO_2,\;O_3,\;PM10,\;NO_2,\;CO$ in the Urban area of Palermo, Italy, Atmospheric Environment, 41, 2967-2995.   DOI   ScienceOn
12 조신섭, 이정형(1997) SAS/ETS를 이용한 경제시계열 분석, 자유아카데미.