• Title/Summary/Keyword: Metalloprotease inhibitor

Search Result 23, Processing Time 0.031 seconds

Characterization of extracellular proteases of Aeromonas hydrophila isolated from the intestine of carp(Cyprinus carpio) (잉어(Cyprinus carpio)로부터 분리된 Aeromonas hydrophila의 extracelluar proteases 연구)

  • Lee, Jong-Kyu;Kim, Jong-Pil;Choi, Tae-Jin;Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Aeromonas hydrophila isolated from the intestine of carp produced several kinds of proteases into the medium. Inhibitor assay with the culture supernatant of A. hydrophila showed that there were major metalloproteases and minor serine proteases. Gelatin SDS-PAGE showed two proteolytic bands. One broad protease band was inhibited by metalloprotease specific inhibitor, EDTA, indicating a metalloprotease. The other was inhibited by serine protease specific inhibitor, PMSF, suggesting a serine protease. The proteolytic activities of both extracellular proteases remained on Gelatin SDS-PAGE after heating at $70^{\circ}C$ for 30 min. However, the major metalloprotease was separated into two proteolytic bands on Gelatin PAGE by gel filtration chromatography on Sephadex G-75.

  • PDF

Importance of Leu-5 and Pro-6 in the Inhibitory Activity of the Serratia marcescens Metalloprotease Inhibitor (SmaPI)

  • Bae, Kwang-Hee;Kim, Dong-Min;Kim, Sun-Taek;Kim, Tae-Hoon;Shin, Yong-Chul;Byun, Si-Myung
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.109-113
    • /
    • 2001
  • The Serratia marcescens metalloprotease inhibitor (SmaPI) is a proteinase inhibitor toward Serratia marcescens metalloprotease (SMP). The three-dimensional structure of SmaPI was calculated by computer modeling using the structure complex between SMP and the Erwinia chrysanthemi inhibitor as a template. Based on this model structure, the substitution of the amino acid residues, Ala4, Leu-5, Pro-6, and Thr-7, were located at the hinge region of the N-terminal segment by site-directed mutagenesis. Although the A4R and T7A mutant SmaPIs showed a nearly full inhibitory activity, the inhibitory activity of SmaPI decreased significantly when the Leu-5 was converted to Ala, Gly, Ile, or Val. Surprisingly, the L5I and L5V mutant SmaPIs showed less inhibitory activities than the L5A mutant. From these results, we suggested that the orientations and positions of respective aliphatic groups in the side-chain of position 5 mainly affected the inhibitory activity of SmaPI. The overall side-chain hydrophobicity was only slightly affected. The side-chain of the Leu-5 residue contributed approximately 0.79 kcal/mol out of 8.44 kcal/mol to the binding of SmaPI with SMP The inhibitory activities of P6A and F6G were also severely decreased. The Pro-6 may have a critical role in maintaining the strict conformation of the N-terminal portion that may be important in the inhibitory activity of SmaPI. In conclusion, Leu-5 and Pro-6 have crucial roles in the inhibitory function of SmaPI toward SMP.

  • PDF

Streptomyces griseus HH1, An A-factor Deficient Mutant Produces Diminished Level of Trypsin and Increased Level of Metalloproteases

  • Kim, Jung-Mee;Hong, Soon-Kwang
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • A-factor I a microbial hormone that can positively control cell differentiation leading to spore formation and secondary metabolite formation in Streptomyces griseus. to identify a protease that is deeply involved in the morphological and physiological differentiation of Streptomyces, the proteases produced by Streptomyces griseus IFO 13350 and its A-factor deficient mutant strain, Streptomyces griseus HH1, as well as Streptomyces griseus HH1 transformed with the afsA gene were sturdied. In general Streptomyces griseus showed a higher degree of cell growth and protease activity in proportion to its ability to produce a higher amount of A-factor. In particular, the specific activity of the trypsin of Streptomyces griseus IFO 13350 was greatly enhanced more than twice compared with that of Streptomyces griseus HH1 in the later stage of growth. The specific activity of the metalloprotease of Streptomyces griseus HH1 was greatly enhanced more than twice compared with that of Streptomyces griseus IFO 13350, and this observation was reversed in the presence of thiostreptione, However, Streptomyces griseus HH1 transformed with the afsA gene showed a significantly decreased level of trypsin and metalloprotease activity compared with that of the HH1 strain. There was no significant difference between Streptomyces griseus IFO 13350 and HH1 strain in their chymotrypsin and thiol protease activity, yet the level of leu-amionpeptidase activity was 2 times higher in Streptomyces griseus HH1 than in strain IFO 13350 . Streptomyces griseus HH1 harboring afsA showed a similar level of enzyme activity , however, all the three protease activities sharply increased and the thiol protease activity was critically increased at the end of the fermentation. When a serine protease inhibitor, pefabloc SC, and metalloprotease inhibitor, EDTA, were applied to strain IFO 13350 to examine the in vivo effects of the protease inhibitors on the morpholofical differentiation, the formation of aerial meycelium and spores was delayed by two or three days.

  • PDF

Isolation of Angiotensin I Converting Enzyme (ACE) Inhibitor from fermented oyster, Crassostrea gigas

  • Park, Ji-Young;Je, Jae-Young;Park, Pyo-Jam;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.193-194
    • /
    • 2002
  • Angiotensin I converting enzyme (ACE) inhibitor was purified from Crassostrea gigas. The ACE belongs to the class of metalloprotease. This enzyme plays an important physiological role in regulating blood pressure of the rennin-angiotensin system by converting from angiotensin I to octapeptide angiotensin II, a potent vasoconstrictor and by inactivating bradykinin, which has depressor action. (omitted)

  • PDF

Retrovirus-mediated Gene Delivery of TIMP-2 Inhibits Invasiveness, Motility and Angiogenesis

  • Ahn, Seong-Min;Seojin Jeong;Kim, Yeon-Soo;Yeowon Sohn;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.143-143
    • /
    • 2003
  • The matrix metalloproteases (MMPs) play important roles in invasion, metastasis and angiogenesis in various cell types. An endogenous inhibitor of MMP, tissue inhibitor of metalloprotease-2 (TIMP-2), has high specificity for MMP-2. An imbalance between MMP-2 and TIMP-2 causes the degradation of the extracellular matrix associated with pathological events including invasion, metastasis and angiogenesis.(omitted)

  • PDF

Proteases and Protease Inhibitors Produced in Streptomycetes and Their Roles in Morphological Differentiation

  • KIM DAE WI;KANG SUNG GYUN;KIM IN SEOP;LEE BYONG KYU;RHO YONG TAIK;LEE KYE JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • Streptomycetes are Gram-positive microorganisms producing secondary metabolites through unique physiological differentiation [4]. The microbes show unusual morphological differentiation to form substrate mycelia, aerial mycelia, and arthrospores on solid medium [19]. Substrate mycelium growth is sustaining with sufficient nutrients in the culture medium. The concentration of a specific individual substrate in the culture environment is the most important extracellular factor allowing vegetative mycelia growth, where extracellular hydrolytic enzymes participate in the utilization of waterinsoluble substrates. However, with starvation of nutrients in the culture medium, the vegetative mycelia differentiate to aerial mycelia and spores. It has been considered that shiftdown of essential nutrients for mycelia growth is the most important factor triggering morphological and physiological differentiation in Streptomyces spp. Since proteineous macromolecule compounds are the major cellular components, these are faced to endogenously metabolize following a severe depletion of nitrogen source in culture nutrients (Fig. 1). Various proteases were identified of which production was specifically related with the phase of mycelium growth and also morphological differentiation. The involvement of proteases and protease inhibitor is reviewed as a factor explaining the mycelium differentiation in Streptomyces spp.

3',4'-Dihydroxyl Groups in Luteolin are Important for Its Inhibitory Activities against ADAMTS-4

  • Choi, Ji-Won;Jeong, Ki-Woong;Kim, Jin-Kyoung;Chang, Byung-Ha;Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2907-2909
    • /
    • 2012
  • A disintegrin and metalloprotease with thrombospondin domains (ADAMTS) are a member of peptidase and involved in processing of von Willebrand factor as well as cleavage of aggrecan, versican, brevican and neurocan. Among 19 subfamilies of human ADAMTS, ADAMTS-4 is a zinc-binding metalloprotease and is a famous therapeutic target for arthritis. It has been reported that a flavonoid luteolin shows inhibitory activity against ADMATS-4. In this study, we verified that luteolin is a potent inhibitor of ADAMTS-4 and probed the molecular basis of its action. On the basis of a docking study, we proposed a binding model between luteolin and ADAMTS-4 in which 3',4'-dihydroxyl groups in luteolin formed hydrogen bonding with ADMATS-4 and these interactions are important for its inhibitory activity against ADAMTS-4.

Anti-inflammatory Effect of Herbal Complex HP-04 on Degenerative Osteoarthritis (해동피를 포함한 생약복합제제 HP-04의 퇴행성 골관절염에 대한 항염효과)

  • Jo, Hyoung-Kwon;Kim, Dae-Sung;Kim, Jung-Young;Park, Young-Mi;Shin, Dong-Yeop;Lee, Hak-Yong;Kim, Hoon;Lee, Dong-Sung;Cho, Seong-Wan
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • To investigate the anti-inflammatory effect on Degenerative Osteoarthritis, Male sprague-Dawley rats were randomized and classified into three different concentration groups. We measured weekly weight change, dietary intake, drinking water intake, blood analysis like TNF-α (tumor necrosis factor-α), IL-6 (interleukin 6), TIMP-1 (tissue inhibitor of metalloprotease-1), MMP-2 (matrix metalloprotease-2), MMP-9 (matrix metalloprotease-9) and micro CT analysis. The results suggest that the treatment with herbal complex HP-04 improved the Monosodium iodoacetate (MIA) induced degenerative osteoarthritis and it could be applicable for the improvement of arthritic symptoms as a new therapeutic agent.

Suppressive Effect of Arazyme on Neutrophil Apoptosis in Normal and Allergic Subjects

  • Kim, In Sik;Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Arazyme is a metalloprotease secreted by Aranicola proteolyticus that was previously shown to suppress cytokine expression of keratinocytes and endothelial cells and inhibit histopathological features in an atopic dermatitis-like animal model. However, the regulatory effects of arazyme in other allergic diseases have yet to be elucidated. In this study, we investigated whether arazyme is effective against neutrophil apoptosis in allergic diseases such as allergic rhinitis and asthma. Arazyme inhibited neutrophil apoptosis of normal subjects in a dose-dependent manner. However, the antiapoptotic effect of arazyme was reversed by LY294002, an inhibitor of PI3K, AKTi, an inhibitor of Akt, PD98059, an inhibitor of MEK, and BAY-11-7085, an inhibitor of NF-${\kappa}B$. Arazyme induced activation of NF-${\kappa}B$ via PI3K/Akt/ERK pathway. The anti-apoptotic effect of arazyme is associated with inhibition of cleavage of caspase 3 and caspase 9. Arazyme inhibited constitutive apoptosis of neutrophil in a dose-dependent manner in allergic subjects, and its mechanism was shown to be associated with PI3K/Akt/ERK/NF-${\kappa}B$. The results presented here improve our understanding of neutrophil apoptosis regulation and will facilitate development of drugs for treatment of allergic diseases.

Identification of a lead small-molecule inhibitor of anthrax lethal toxin by using fluorescence-based high-throughput screening

  • Wei, Dong;Bu, Zhaoyun;Yu, Ailian;Li, Feng
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.811-815
    • /
    • 2011
  • Inhalational anthrax is caused by B. anthracis, a virulent sporeforming bacterium which secretes anthrax toxins consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease and is the main determinant in the pathogenesis of anthrax. Here we report the identification of a lead small-molecule inhibitor of anthrax lethal factor by screening an available synthetic small-molecule inhibitor library using fluorescence-based high-throughput screening (HTS) approach. Seven small molecules were found to have inhibitory effect against LF activity, among which SM157 had the highest inhibitory activity. All theses small molecule inhibitors inhibited LF in a noncompetitive inhibition mode. SM157 and SM167 are from the same family, both having an identical group complex, which is predicted to insert into S1' pocket of LF. More potent small-molecule inhibitors could be developed by modifying SM157 based on this identical group complex.