Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.9.2907

3',4'-Dihydroxyl Groups in Luteolin are Important for Its Inhibitory Activities against ADAMTS-4  

Choi, Ji-Won (Drug Discovery Team, Bioinformatics & Molecular Design Research Center)
Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Chang, Byung-Ha (Drug Discovery Team, Bioinformatics & Molecular Design Research Center)
Lee, Jee-Young (Drug Discovery Team, Bioinformatics & Molecular Design Research Center)
Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
A disintegrin and metalloprotease with thrombospondin domains (ADAMTS) are a member of peptidase and involved in processing of von Willebrand factor as well as cleavage of aggrecan, versican, brevican and neurocan. Among 19 subfamilies of human ADAMTS, ADAMTS-4 is a zinc-binding metalloprotease and is a famous therapeutic target for arthritis. It has been reported that a flavonoid luteolin shows inhibitory activity against ADMATS-4. In this study, we verified that luteolin is a potent inhibitor of ADAMTS-4 and probed the molecular basis of its action. On the basis of a docking study, we proposed a binding model between luteolin and ADAMTS-4 in which 3',4'-dihydroxyl groups in luteolin formed hydrogen bonding with ADMATS-4 and these interactions are important for its inhibitory activity against ADAMTS-4.
Keywords
ADAMTS-4; Metalloprotease; Flavonoid; Luteolin; Docking;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Le, Goff C.; Cormier-Daire, V. Hum. Mol. Genet. 2011, 20, R163-R167.   DOI
2 Porter, S.; Clark, I. M.; Kevorkian, L.; Edwards, D. R. Biochem. J. 2005, 386, 15-27.   DOI
3 Mosyak, L.; Georgiadis, K.; Shane, T.; Svenson, K.; Hebert, T.; McDonagh, T.; Mackie, S.; Olland, S.; Lin, L.; Zhong, X.; Kriz, R.; Reifenberg, E. L.; Collins-Racie, L. A.; Corcoran, C.; Freeman, B.; Zollner, R.; Marvell, T.; Vera, M.; Sum, P. E.; Lavallie, E. R.; Stahl, M.; Somers, W. Protein Sci. 2008, 17, 16-21.   DOI
4 Malesev, D.; Kuntiæ, V. J. Serb. Chem. Soc. 2007, 72, 921-939.   DOI
5 Okada, A.; Okada, Y. Clin. Calcium. 2009, 19, 1593-1601.
6 Dowling, S.; Regan, F.; Hughes, H. J. Inorg. Biochem. 2010, 104, 1091-1098.   DOI
7 Vieth, M.; Hirst, J. D.; Dominy, B. N.; Daigler, H.; Brooks, C. L. J. Comput. Chem. 1998, 19, 1623-1631.   DOI
8 Verma, P.; Dalal, K. J. Cell Biochem. 2011, 112, 3507-3514.   DOI   ScienceOn
9 Nicholson, A. C.; Malik, S. B.; Logsdon, J. M., Jr.; Van Meir, E. G. BMC Evol. Biol. 2005, 4, 11.
10 Apte, S. S. J. Biol. Chem. 2009, 284, 31493-31497.   DOI
11 Hashimoto, G.; Shimoda, M.; Okada, Y. J. Biol. Chem. 2004, 279, 32483-32491.   DOI
12 Groma, G.; Grskovic, I.; Schael, S.; Ehlen, H. W.; Wagener, R.; Fosang, A.; Aszodi, A.; Paulsson, M.; Brachvogel, B.; Zaucke, F. Matrix Biol. 2011, 30, 275-280.   DOI
13 Moncada-Pazos, A.; Obaya, A. J.; Viloria, C. G.; López-Otín, C.; Cal, S. J. Mol. Med (Berl). 2011, 89, 611-619.   DOI
14 Cazarolli, L. H.; Zanatta, L.; Alberton, E. H.; Figueiredo, M. S.; Folador, P.; Damazio, R. G.; Pizzolatti, M. G.; Silva, F. R. Mini Rev. Med. Chem. 2008, 8, 1429-1440.   DOI
15 Stanton, H.; Melrose, J.; Little, C. B.; Fosang, A. J. Biochim. Biophys. Acta 2011, 1812, 1616-1629.   DOI
16 Rajnaryana, K.; Sripalreddy, M.; Chalavadi, M. R.; Krishna, D. R. Indian J. Pharmacol. 2001, 33, 2-16.
17 Jang, S.; Kelley, K. W.; Johnson, R. W. Proc. Natl. Acad. Sci. USA. 2008, 105, 7534-7539.   DOI
18 Yu, M. C.; Chen, J. H.; Lai, C. Y.; Han, C. Y.; Ko, W. C. Eur. J. Pharmacol. 2010, 627, 269-275.   DOI
19 Wu, G.; Robertson, D. H.; Brooks, C. L., III.; Vieth, M. A. J. Comput. Chem. 2003, 24, 1549-1562.   DOI
20 Vieth, M.; Hirst, J. D.; Kolinski, A.; Brooks, C. L. J. Comput. Chem. 1998, 19, 1612-1622.   DOI