• Title/Summary/Keyword: Metallic particles

Search Result 230, Processing Time 0.027 seconds

Effect of Chamber Pressure on the Microstructure of Fe Nano Powders Synthesized by Plasma Arc Discharge Process (플라즈마 아크 방전법으로 제조된 Fe 나노분말의 미세조직에 미치는 챔버압력 영향)

  • 박우영;윤철수;김성덕;유지훈;오영우;최철진
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2004
  • Fe nanopowders were successfully synthesized by plasma arc discharge (PAD) process using Fe rod. The influence of chamber pressure on the microstructure was investigated by means of X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared particles had nearly spherical shapes and consisted of metallic cores (a-Fe) and oxide shells (Fe$_{3}$O$_{4}$), The powder size increased with increasing chamber pressure due to the higher dissolution and ejection rate of H$_2$ and gas density in the molten metal.

Filtration Characteristics of Magnetic Fibrous Polymeric Filter Elements for Industrial Lub-systems (산업용 자성폴리머 필터소재의 여과특성 연구)

  • 안병길;최웅수;이용훈;정용진;권오관
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.39-47
    • /
    • 1996
  • The magnetic fibrous polymeric oil filter elements for industrial lub-systems were obtained by pneumoextrusion processing prepared from thermoplastic pqlymer (polyamide) containing a magnetic particulate filler (Ba ferrite), and treated subsequently in a magnetic fields. Using the standard laboratory oil filtration test rig, metallic particle quantifier and image analyser system, the dependence of filtration charateristics of the magnetic filter media on the parameters of porosity and magnetic properties was investigated. The pressure drops and efficiencies of lubricating filter elements were measured on the packing density and magnetised filler content of filter element. Also, the industrial lub-systems such as lubricant filters for gear test rig and electric discharge processing machine were used for testing the flitrational characteristics of tl, c magnetised filter elements. The magnetic fibrous polymeric filter material was shown to possess a highly filtration efficiency in filtering the fine ferrous particles with increasing the magnetic force of filter element. Therefore, it is expected that the magnetic fibrous polymeric filter material should be used for effective oil filrers on the industrial lub-systems.

Fabrication of Multi-functional Self-Assembled Monolayers by Microcontact Printing and Their Application for Electronic and Biological Devices (미세접촉인쇄기법을 이용한 다기능성 자기조립막 제작과 전자.생물소자로의 응용)

  • Choi, Dae-Geun;Yu, Hyung-Kyun;Yang, Seung-Man;Jo, Jeong-Dai;Lee, Eung-Sug
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1021-1024
    • /
    • 2003
  • In this work, we fabricated various 2D metallic and polymeric nanopatterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing ($\mu$ P) based on soft lithography. Silicon masters for the micromolding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. Finally, monodisperse metal or polymer particles could be obtained in the prepared pattern for the application of electronic devices.

  • PDF

Crystallization in Li20-A1203-Si02 Glass induced by 355nm Nd:YAG Laser Irradiation

  • Lee, Yong-Su;Kang, Won-Ho;Song, Sun-Dal
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.112-117
    • /
    • 2000
  • Nd:YAG laser of 355nm wavelength, which amounts to 3.5eV, produced by a harmonic generator was used to create Ag metallic particles as seeds for nucleation in photosensitive glass containing Ag+ and Ce3+. The pulse widths and frequency of the laser were 8ns and 10Hz, respectively. For crystalline growth, heat-treatment following laser irradiation was carried out at $570^{\circ}C$ fur 1h. Then, the LiAlSi3O8. crystal phase appeared in the laser irradiated lithium aluminum silicate glass. We present the effect of laser-induced nucleation compared with spontaneous nucleation by heat treatment for crystallization in the glass.

  • PDF

Characterization of Enhanced CO Oxidation Activity by Alumina Supported Platinum Catalyst

  • Jo, Myung-Chan
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1071-1077
    • /
    • 2009
  • A novel pretreatment technique was applied to the conventional Pt/alumina catalyst to prepare for the highly efficient catalyst for the preferential oxidation of carbon monoxide in hydrogen-rich condition. Their performance was investigated by selective CO oxidation reaction. CO conversion with the oxygen-treated Pt/Alumina catalyst increased remarkably especially at the low temperature below $100^{\circ}C$. This result is promising for the normal operation of the proton exchange membrane fuel cell (PEMFC) without CO poisoning of the anode catalyst. XRD analysis results showed that metallic Pt peaks were not observed for the oxygen-treated catalyst. This implies that well dispersed small Pt particles exist on the catalyst. This result was continued by high resolution transmission electron microscopy (HRTEM) analysis. Consequently, it can be concluded that highly dispersed Pt nanoparticles could be prepared by the novel pretreatment technique and thus, CO conversion could be increased considerably especially at the low temperatures below $100^{\circ}C$.

Thermal and Electrical Breakdown Phenomena in Electrical Insulator of Power Cable (전력케이블용 전기절연재료의 열적, 전기적 파괴현상)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.187-189
    • /
    • 1997
  • Thermal and electrical breakdown phenomena in XLPE insulator of power cable were investigated. At high temperature the polymeric insulator was thermally deteriorated. Under the magnified high electric field, electrical tree was initiated at the sharp tip of needle electrode which was inserted to simulate the defects and impurities such as void, crack, metallic particles, dusts, and so on.

  • PDF

The Characteristic of breakdown Particle Contaminated Model GIS with Epoxy Coated Electrodes (모의 GIS 내부에 파티클 유입시 코팅전극의 절연파괴 특성)

  • Koo, K.S.;Lee, D.Z.;Kwak, H.R.;Kim, Y.C.;Park, J.S.;Park, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1887-1889
    • /
    • 2002
  • One of the most frequent sources of the accident is metal contaminant in GIS. This paper deals with the characteristics of breakdown voltage of metallic particles using electrodes of various epoxy coating thickness. As experimental results, breakdown voltage of the thickly coated electrode is higher than that of thinly coated electrode. It is considered that resistance of the epoxy coating impedes the development of pre-discharges in the gas.

  • PDF

Polyol Synthesis of Ruthenium Selenide Catalysts for Oxygen Reduction Reaction

  • Lee, Ki-Rak;Woo, Seong-Ihl
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3145-3150
    • /
    • 2010
  • Ruthenium catalysts modified by selenium have been introduced as alternative materials to Pt in Direct methanol fuel cells (DMFCs). RuSe nano-particles were synthesized on the Vulcan XC72R carbon supports via polyol method. The prepared catalysts were electrochemically and physically characterized by cyclic voltammetry (CV,) linear sweep voltammetry, methanol tolerance test, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energydispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Increasing the Se concentration up to 20 at % increased the electro-catalytic activity for the oxygen reduction. By increasing Se amount, Ru metallic form on the surface was increased. The $Ru_{80}Se_{20}$/C catalysts showed the highest oxygen reduction reaction (ORR) activity and outstanding methanol tolerant property in half cell tests as well as single cell test.

Interfacial Microstructures between Ag Wiring Layers and Various Substrates (Ag 인쇄배선과 이종재료기판과의 접합계면)

  • Kim, Keun-Soo;Suganuma, Katsuaki;Huh, Seok-Hwan
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.90-94
    • /
    • 2011
  • Ag metallic particles from nano-scale to submicron-scale are combined with organic solvent to provide fine circuits and interconnection. Ink-jet printing with Ag nano particle inks demonstrated the potentials of the new printed electronics technology. The bonding at the interface between the Ag wiring layer and the various substrates is very important. In this study, the details of interfaces in Ag wiring are investigated primarily by microstructure observation. By adjusting the materials and sintering conditions, nicely formed interfaces between Ag wiring and Cu, Au or organic substrates are achieved. In contrast, transmission electron microscope (TEM) image clearly shows interface debonding between Ag wiring and Sn substrate. Sn oxides are formed on the surface of the Sn plating. The formation of these is a root cause of the interface debonding.

RESEARCH PAPERS : REMOVAL EFFICIENCY OF THE POLLUTANTS BY MULTILAYERED METAL TREATED CARBON FILTER

  • Oh, Won-Chun;Lee, Ho-Jin;Bae, Jang-Soon
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.193-200
    • /
    • 2004
  • A study of the treatment of piggery wastes using a multilayered metal-activated carbon system followed by carbon bed filtration was carried out at bench scale. From the physicochemical properties obtained from samples treated with aqueous solutions containing metallic ions such as Ag$^+$, Cu$^{2+}$, Na$^{-}$, K$^+$ and Mn$^{2+}$, main inspections are subjected to isothem shape, pore distribution with micropore, SEM and EDX. Multilayered metal-activated carbons were contacted to waste water to inwestigate the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. From these removal performance was achieved. The high efficiency of the multilayered metal-activated carbon bed, satisfactory removal performance was achieved. The high efficiency of the multilayered metal-activated carbon bed was derermined by the properties of this material for trapping, catalytic effect and adsorption of organic solid particles.