• 제목/요약/키워드: Metal temperature

검색결과 4,836건 처리시간 0.032초

Ni와 Co 촉매금속의 표면 거칠기에 따른 그래핀 성장 특성 (Characteristic of Ni and Co metal-catalyst surface roughness in graphene)

  • 김은호;안효섭;장현철;조원주;이완규;정종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.263-263
    • /
    • 2010
  • High temperature annealing is required to synthesize graphene using CVD. When thin metal catalyst is used for the synthesis, the high temperature pre-annealing makes the thin catalyst highly agglomerated. We investigated the agglomeration effect on the shape of the synthesized graphene. It is found that high temperature annealing makes randomly distributed many hole or blister on metal catalyst, and the synthesized graphene features floral pattern around the hole. The floral patterns of graphene turned out to be multi-layers and higher D peaks in raman spectrum.

  • PDF

2상 스테인리스강 용접부의 저온충격인성과 내응력 부식성에 관한 연구 (Low Temperature Impact Toughness and Stress Corrosion Resistance in Duplex Stainless Steel Welds)

  • 김효종;이성근
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.151-160
    • /
    • 1995
  • The characteristics of low temperature impact toughness and stress corrosion resistance at boiling MgCl$_2$ solution of GTA and SMA weld of duplex stainless steels have been investigated. The impact toughness was highest at the GTAW weld metal and lowest at the SMAW weld, which was almost the same as that of the SMAW heat-affected zone. This was attributable to influence of austenite-ferrite phase balance, and the degree and nature of precipitation that occurred during welding. The SCC resistance of the weldments was slightly higher than that of the base metal, whereas no difference in the SCC resistance was found between two different weldments.

  • PDF

액체금속원자로 핵연료집합체의 내부 유로폐쇄 열수력 해석 (Thermal-Hydraulic Analysis of Internal Flow Blockage within Fuel Assembly of Nuclear Liquid-Metal Fast Reactor)

  • 권영민;한도희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.47-50
    • /
    • 2002
  • The numerical simulation of a 271-rod fuel assembly of nuclear Liquid-Metal Fast Reactor (LMFR) with an infernal blockage has been carried out. Internal blockage within a subassembly is addressed in the safety assessment because it potentially has very serious consequences for the reactor as a whole. Three dimensional calculations were performed using the SABRE4 computer code for the range of blockage positions and sizes to investigate the seriousness and detectability of the internal blockage. The magnitude and location of the peak temperatures together with the temperature distribution at the subassembly exit were calculated in order to look at the potential for damage within the subassembly, and the possibility of blockage detection. The analysis result shows that the 6-subchannel blockage causes large temperature rise within a assembly with practically no change in mixed mean temperature at the assembly exit.

  • PDF

Numerical Calculation Study on the Generalized Electron Emission Phenomenon

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.158-163
    • /
    • 2009
  • There are two kinds of well-known electron emissions from metal: field and thermionic emission. For thermionic emission, electrons come out of a metal due to the thermal energy, whereas for field emission, electrons tunnel out of a metal through the strong electric field. In this study, the most general electron emission caused by the temperature and electric field with a free electron gas model was considered. The total current density of electron emission comes from the field emission effect, where the electron energy is lower than vacuum, and from the thermionic-emission effect, where the electron energy is higher than vacuum. The total current density of electron emission is shown as a function of the temperature for a constant electric field, and as a function of the electric field for a constant temperature.

금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I) (Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites)

  • 강충길;김남환;김병민
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

Use of High-Temperature Gas-Tight Electrochemical

  • Park, Jong-Hee;Beihai Ma;Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.103-113
    • /
    • 1998
  • By using a gas-tight electrochemical cell, we can perform high-temperature coulometric titration and measure electronic transport properties to determine the elecronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilitized zirconia(YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressure ($pO_2=10^{-35}$ to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria $(Ca-CeO_2 \;and\; CeO_2)$, copper oxides and copper-oxide-based ceramic superconductors, transition metal oxides, $SrFeCo_{0.5}O_x,\; and \;BaTiO_2$.

  • PDF

A negative reactivity feedback driven by induced buoyancy after a temperature transient in lead-cooled fast reactors

  • Arias, Francisco J.
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.80-87
    • /
    • 2018
  • Consideration is given to the possibility to use changes in buoyancy as a negative reactivity feedback mechanism during temperature transients in heavy liquid metal fast reactors. It is shown that by the proper use of heavy pellets in the fuel elements, fuel rods could be endowed with a passive self-ejection mechanism and then with a negative feedback. A first estimate of the feasibility of the mechanism is calculated by using a simplified geometry and model. If in addition, a neutron poison pellet is introduced at the bottom of the fuel, then when the fuel element is displaced upward by buoyancy force, the reactivity will be reduced not only by disassembly of the core but also by introducing the neutron poison from the bottom. The use of induced buoyancy opens up the possibility of introducing greater amounts of actinides into the core, as well as providing a palliative solution to the problem of positive coolant temperature reactivity coefficients that could be featured by the heavy liquid metal fast reactors.

Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound

  • Khan, Nazmul Abedin;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2921-2926
    • /
    • 2009
  • Cu-BTC[$Cu_3(BTC)_2(H_2O)_3$, BTC = 1,3,5-benzenetricarboxylate], one of the most well-known metal-organic framework materials (MOF), has been synthesized under atmospheric pressure and room temperature by using ultrasound. The Cu-BTC can be obtained in 1 min in the presence of DMF (N,N-dimethylformamide), suggesting the possibility of continuous production of Cu-BTC. Moreover, the surface area and pore volume show that the concentration of DMF is important for the synthesis of Cu-BTC having high porosity. The morphology and phase also depend on the concentration of DMF : Cu-BTC cannot be obtained at room temperature in the absence of DMF and aggregated Cu-BTC (with low surface area) is produced in the presence of high concentration of DMF. It seems that the deprotonation of benzenetricarboxylic acid by base (such as DMF) is inevitable for the room temperature syntheses.

21T 초전도자석을 위한 전류도입선 예비설계 (Preliminary Design of Current Lead for 21T Superconducting Magnet)

  • 최연석;김동락;양형석;이병섭
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권3호
    • /
    • pp.43-46
    • /
    • 2008
  • Design of current lead for 21T superconducting magnets is presented. The current lead is composed of a normal metal element, conducting the current from room temperature to intermediate temperature, and an HTS element, conducting the current down to liquid helium temperature. The metal element is disengaged from the HTS element without breaking vacuum after excitation. The optimization of the lead is performed to minimize the thermal heat load when carrying operational current with some margin. In order to confirm the feasibility of our new design, the intermediate joint between a normal metal and HTS element is fabricated and the reliability is tested during engage and disengage performance. The effects of vacuum level and performance cycle on the electrical contact resistance are also investigated.

Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea

  • Lee, Jung-Suk;Lee, Byeong-Gweon
    • Ocean Science Journal
    • /
    • 제40권2호
    • /
    • pp.79-89
    • /
    • 2005
  • Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.