• Title/Summary/Keyword: Metal solubility

Search Result 160, Processing Time 0.03 seconds

Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells (카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성)

  • Kim, MyeongSeok;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Pood Component Characteristics of Cuttle Bone as a Mineral Source (무기질 소재로서 갑오징어갑의 성분 특성)

  • CHO Moon-Lae;HEU Min-Soo;KIM Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.478-482
    • /
    • 2001
  • This study was conducted to get a knowledge on food components of cuttle bone (CB) as a food resource. The yields and ash contents of CB were about $7.5\%$ on whole cuttle fish and about $90\%$ on dry basis, respectively, The contents of heavy metal might not invoke health risk in using food resource, The major mineral of CB was calcium as about $22\%$ in content. The yields, proximate compositions, heavy metal and mineral contents were not significantly different between domestic and imported CB. Judging from X-ray diffraction pattern, most of calcium in CB was present as a form of calcium carbonate (CC), and scanning electron micrograph showed irregular form. Buffering capacity of CB showed strongly at pH 7, and its pattern was the same as shown in that of CC, And CB solution showed a very high degree in turbidity comparing to that of CC solution. The solubility of CB was superior to that of CC, but inferior to those of calcium powders on the market, It was concluded from above results that CB could be effectively utilized as a calcium source.

  • PDF

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

A Basic Study on the Effective Management for MSWI Fly Ash (II) - Effect of Leaching Parameter - (소각 비산재의 적정처리를 위한 기초연구(II) - 용출인자의 영향 -)

  • Kim, Jin-Beom;Lee, Woo-Keun;Shim, Yeong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1357-1364
    • /
    • 2000
  • Our study was performed to evaluate the effect of leaching parameters including the physicochemical characteristics and the fractionated composition of heavy metals on the release of heavy metals in fly ash discharged from MSWI. Leaching parameters such as pH, CEC, particle size, and exchangeable fraction among the fractional composition classified by sequential extraction procedure are considered. The leaching rate of heavy metal released by KSLT method is largely dependent on the pH of fly ash. The effect of pH on the release of heavy metals is different from elements. It appears that the leaching rate of cadmium and copper decreases with increasing pH, while lead and zinc increases at the condition of neutral or strong alkali condition, which suggests that the leaching of heavy metals are limited by the solubility. It is found that the effect of CEC is similarly to that of pH, $D_{10}$ among the particle size of fly ash is negative correlated with the concentration of heavy metals leached by KSLT method. In the case of exchangeable fraction, the leaching rate of heavy metals is linearly correlated with the exchangeable fraction for the fly ash below 40 meq/l00g of CEC, but not related out of the range.

  • PDF

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria (토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성)

  • Lee, Seung Yeop;Roh, Yul;Jeong, Jong Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • As we are trying to in-situ treat (purify or immobilize) heavy metals or radionuclides in groundwater, one of the geochemical factors to be necessarily considered is the value of oxidation/reduction potential (ORP) of the groundwater. A biogeochemical impact on the characteristic ORP change of groundwater taken from the KAERI underground was observed as a function of time by adding electron-donor (lactate), electron-acceptor (sulfate), and indigenous bacteria in a laboratory condition. There was a slight increase of Eh (slow oxidation) of the pure groundwater with time under a $N_2$-filled glove-box. However, most of groundwaters that contained lactate, sulfate or bacteria showed Eh decrease (reduction) characteristics. In particular, when 'Baculatum', a local indigenous sulfate-reducing bacterium, was injected into the KAERI groundwater, it turned to become a highly-reduced one having a decreased Eh to around -500 mV. Although the sulfate-reducing bacterium thus has much greater ability to reduce groundwater than other metal-reducing bacteria, it surely necessitated some dissolved ferrous-sulfate and finally generated sulfide minerals (e.g., mackinawite), which made a prediction for subsequent reactions difficult. As a result, the ORP of groundwater was largely affected even by a slight injection of nutrient without bacteria, indicating that oxidation state, solubility and sorption characteristics of dissolved contaminants, which are affected by the ORP, could be changed and controlled through in-situ biostimulation method.

Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution (전해생성(電解生成)된 염소(鹽素)에 의한 구리의 침출(浸出) 거동(擧動))

  • Kim, Eun-Young;Kim, Min-Seuk;Lee, Jae-Chun;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.33-40
    • /
    • 2006
  • Leaching behavior of copper using electro-generated chlorine was investigated in hydrochloric acid solutions. When leached copper concentration was lower than 3.6g/L, the utilization efficiency of the electro-generated chlorine was close to 100% at $10mA/cm^2,\;25^{\circ}C$, 400 rpm in 1M HCl solutions. The concentration ot the leached copper over 3.6g/L caused the electrode potential to drop quietly, leading to a change or leaching mechanism. The leaching rate oi copper began to decrease at the concentration of copper 5.2g/L. This is probably due to the formation of a layer of CuCl on Cu metal in 1M HCl solutions. The leaching rate, however, was not retarded in a solution ot high chloride concentration. The high solubility of CuCl in the solution may prevent the formation of CuCl on Cu metal.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method (환원-산화법을 이용한 리드프레임 에칭폐액의 정제과정 설계)

  • Lee, Seung Bum;Jeon, Gil Song;Jung, Rae Yoon;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • When copper alloy is used in etching process for the production of lead frame, the high concentration of heavy metals, such as iron, nickel and zinc may be included in the etching waste. Those etching waste is classified as a specified one. Therefore a customized design was designed for the purification process of the lead frame etching waste liquid containing high concentrations of heavy metals for the production of an electroplating copper(II) oxide. Since the lead frame etching waste solution contains highly concentrated heavy metal species, an ion exchange method is difficult to remove all heavy metals. In this study, a copper(I) chloride was manufactured by using water solubility difference related to the reduction-oxidation method followed by the reunion of copper(II) chloride using sodium sulfate as an oxidant. The hydrazine was chosen as a reducing agent. The optimum added amount was 1.4 mol per 1.0 mol of copper. In the case of removal of heavy metals by using the combination of reduction-oxidation and ion exchange resin methods, 4.3 ppm of $Fe^{3+}$, 2.4 ppm of $Ni^{2+}$ and 0.78 ppm of $Zn^{2+}$ can be reused as raw materials for electroplating copper(II) oxide when repeated three times.

Characteristics of $TiH_2$ under High Pressure (고압하에서 $TiH_2$의 특성화 연구)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.72-78
    • /
    • 1992
  • The Earth outer core accomodates moderately considerable amount of lighter elements than pure iron itself. Hydrogen is one of the possible candidates of minor constituents in the outer core. It would be worth while to extend for the pressure effect on the solubility of hydrogen in the metal-hydrides including iron hydride. In view of hydrogen being one of the potential substitutes for petroleum, searching a more efficient way for storing hydrogen in the form of hydrides is of considerable value. For two purposes, $TiH_2$was selected among lot of hydrides for its characteristics under pressure and temperature. There have been two kinds of experiment carried out on $TiH_2$ under different experimental conditions. As one of these attempts, polycrystalline $TiH_2$ was loaded up to 15 GPa stepwise at the constant temperature 500${\circ}$ using a piston-cylinder diamond anvil cell equipped with a miniature furnace of an electric power supply. The X-ra diffraction technique was employed on the quenched samples after the simultaneous high pressure and temperature treatments. During these high pressure-temperature runs, and irreversible phase of $TiH_2$ has been observed at the pressures higher than 11.3 GPa, which would be assigned to the orthorhombic crystal system as one of the new phase(s) of $TiH_2$. Molar volume change on this phase transition is ∼10%.

  • PDF