• Title/Summary/Keyword: Metal oxide semiconductor

Search Result 720, Processing Time 0.028 seconds

Applications of Smartphone Cameras in Agriculture, Environment, and Food: A review

  • Kwon, Ojun;Park, Tusan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.330-338
    • /
    • 2017
  • Purpose: The smartphone is actively being used in many research fields, primarily in medical and diagnostic applications. However, there are cases in which smartphone-based systems have been developed for agriculture, environment, and food applications. The purpose of this review is to summarize the research cases using smartphone cameras in agriculture, environment, and food. Methods: This review introduces seventeen research cases which used smartphone cameras in agriculture, food, water, and soil applications. These were classified as systems involving "smartphone-camera-alone" and "smartphone camera with optical accessories". Results: Detecting food-borne pathogens, analyzing the quality of foods, monitoring water quality and safety, gathering information regarding plant growth or damage, identifying weeds, and measuring soil loss after rain were presented for the smartphone-camera-alone system. Measuring food and water quality and safety, phenotyping seeds, and soil classifications were presented for the smartphone camera with optical accessories. Conclusions: Smartphone cameras were applied in various areas for several purposes. The use of smartphone cameras has advantages regarding high-resolution imaging, manual or auto exposure and focus control, ease of use, portability, image storage, and most importantly, programmability. The studies discussed were achieved by sensitivity improvements of CCDs (charge-coupled devices) and CMOS (complementary metal-oxide-semiconductor) on smartphone cameras and improved computing power of the smartphone, respectively. A smartphone camera-based system can be used with ease, low cost, in near-real-time, and on-site. This review article presents the applications and potential of the smartphone and the smartphone camera used for various purposes in agriculture, environment, and food.

Recognization of Inflammable Gases Using Sensor Array and Principal Component Analysis (센서 어레이와 주성분 기법을 이용한 가연성 가스 인식)

  • Lee, Dae-Sik;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.108-117
    • /
    • 2001
  • A sensor array with 10 discrete sensors integrated on a substrate w3s developed for discriminating the kinds and quantities of inflammable gases, like butane, propane, methane, LPG, carbon monoxide. The sensor array consisted of 10 metal oxide semiconductor gas sensors using the nano-sized $SnO_2$ as base material and had differentiated sensitivity patterns to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and good reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensing patterns of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of the tested inflammable gases under the lower explosion limit through the principal component analysis(PCA).

  • PDF

Non-Metric Digital Camera Lens Calibration Using Ground Control Points (지상기준점을 이용한 비측량용 카메라 렌즈 캘리브레이션)

  • Won, Jae-Ho;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2012
  • The most recent, 80 mega pixels digital camera appeared through the development of digital technology, and nonmetric digital cameras have been using in various field of photogrammetry. In this study, we experimented lens calibration using aerial photographs and ground control points. The aerial photographs were taken a non-metric digital camera which is CMOS(Complementary Metal Oxide Semiconductor) 21.1 mega pixels sensor and 35mm lens at a helicopter. And the ground control points were selected on the 1:1,000 plotting origin data. As a result, we calculated focal length, PPA(Principal Point of Autocollimation) and symmetric radial distortion coefficients from the lens. Also, RMSE(root mean square error) and maximum residual of the ground control points from the aerial triangulation were compared before and after calibration. And we found that the accuracy of the after calibration was improved very significantly.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

Design of Dual-band Power Amplifier using CRLH of Metamaterials (메타구조의 CRLH를 이용한 이중대역 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • In this paper, a novel dual-band power amplifier using metamaterials has been realized with one RF GaN HEMT diffusion metal-oxide-semiconductor field effect transistor. The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. We have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 900 MHz and 2140 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 900 MHz and 2140 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) and IMD of 60.2 %, -23.17dBc and 67.3 %, -25.67dBc at two operation frequencies, respectively.

Crystal Molecular Orbital Calculation of the Lanthanum Nickel Oxide by Means of the Micro-Soft Fortran (마이크로-소프트 포트란을 이용한 복합 산화물 결정의 분자 궤도함수 계산)

  • Koo, Hyun-Joo;Lee, Kwang-Soon;Ahn, Woon-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.685-691
    • /
    • 1995
  • EHMACC and EHPC programs written in VAX version to calculate the tight-binding extended Huckel method is converted into the micro-soft fortran available to PC. The band calculation of LaNiO3 unit cell and extended ($2{\times}2{\times}1$) cell with perovskite structure is made by the PC/386 and PC/486. The calculation is also made for the DOS and the COOP. It is supposed that the electronic property of $LaNiO_3$ is semiconductor along to the ${\Gamma}{\rightarrow}H,\;H{\rightarrow}N,\;and\;N{\rightarrow}{\Gamma}(2D)$ direction with band gap about 0u.35 eV, while metal property in ${\Gamma}{\rightarrow}P\;and\;P{\rightarrow}N(3D)$ direction. The oxygen atom property in $LaNiO_3$ is more effectively affected by oxygen atom position than defect of nickel atom.

  • PDF

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

A study on the Design of Output 380V DC-DC Converter for LVDC Distribution (LVDC 배전을 위한 출력 380V DC-DC 컨버터 설계에 관한 연구)

  • Kim, Phil-Jung;Yang, Seong-Soo;Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.208-215
    • /
    • 2020
  • In this study, the output 380V direct current DC-DC converter for low-voltage direct current(LVDC) distribution was designed in three types, and the voltage and current characteristics of the three types of DC-DC converter were compared and analyzed through simulation. When the converter was configured using a parallel structure with the power metal-oxide semiconductor field-effect transistor and two current suppression insulated-gate bipolar transistors(IGBTs), the time when the output voltage was stabilized at DC 380V was relatively short with 9ms and the range of output current changes was also between 44.8A and 50.2A, indicating that the width of change was much smaller and the effect of current suppression was greater compared to when IGBT was not applied(68~83A). These results suggest that the proposed DC-DC converter for LVDC distribution is likely to be applied to smart grid construction.

Improved Electrical Characteristics of Symmetrical Tunneling Dielectrics Stacked with SiO2 and Si3N4 Layers by Annealing Processes for Non-volatile Memory Applications (비휘발성 메모리를 위한 SiO2와 Si3N4가 대칭적으로 적층된 터널링 절연막의 전기적 특성과 열처리를 통한 특성 개선효과)

  • Kim, Min-Soo;Jung, Myung-Ho;Kim, Kwan-Su;Park, Goon-Ho;Jung, Jong-Wan;Chung, Hong-Bay;Lee, Young-Hie;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.386-389
    • /
    • 2009
  • The electrical characteristics and annealing effects of tunneling dielectrics stacked with $SiO_2$ and $Si_{3}N_{4}$ were investigated. I-V characteristics of band gap engineered tunneling gate stacks consisted of $Si_{3}N_{4}/SiO_2/Si_{3}N_{4}$ (NON), $SiO_2/Si_{3}N_{4}/SiO_2$ (ONO) dielectrics were evaluated and compared with $SiO_2$ single layer using the MOS (metal-oxide-semiconductor) capacitor structure. The leakage currents of engineered tunneling barriers (ONO, NON stacks) are lower than that of the conventional $SiO_2$ single layer at low electrical field. Meanwhile, the engineered tunneling barriers have larger tunneling current at high electrical field. Furthermore, the increased tunneling current through engineered tunneling barriers related to high speed operation can be achieved by annealing processes.

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate (N형 Ge-on-Si 기판에 형성된 Pd Germanide의 열안정성 및 Schottky 장벽 분석)

  • Oh, Se-Kyung;Shin, Hong-Sik;Kang, Min-Ho;Bok, Jeong-Deuk;Jung, Yi-Jung;Kwon, Hyuk-Min;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.