• Title/Summary/Keyword: Metal oxide catalyst

Search Result 165, Processing Time 0.029 seconds

$TiO_2$-Ni inverse Catalyst for CRM Reactions with High Resistance to Coke Formation

  • Seo, Hyun-Ook;Sim, Jong-Ki;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.267-267
    • /
    • 2012
  • $TiO_2$-Ni inverse catalysts were prepared using atomic layer deposition (ALD) process and catalytic $CO_2$ reforming of methane (CRM) reaction over catalysts (either bare Ni or $TiO_2$ coated-Ni particles) were performed using a continuous flow reactor at $800^{\circ}C$. $TiO_2$-Ni inverse catalyst showed higher catalytic reactivity at initial stage of CRM reactions at $800^{\circ}C$ comparing to bare Ni catalysts. Moreover, catalytic activity of $TiO_2$/Ni catalyst was kept high during 13 hrs of the CRM reactions at $800^{\circ}C$, whereas deactivation of bare Ni surface was started within 1hr under same conditions. The results of surface analysis using SEM, XPS, and Raman showed that deposition of graphitic carbon was effectively suppressed in a presence of $TiO_2$ nanoparticles on Ni surface, thereby improving catalytic reactivity and stability of $TiO_2$/Ni catalytic systems. We suggest that utilizing decoration effect of metal catalyst with oxide nanoaprticles is of great potential to develop metal-based catalysts with high stability and reactivity.

  • PDF

The Role of Surface Oxide of Metal Nanoparticles on Catalytic Activity of CO Oxidation Unraveled with Ambient Pressure X-ray Photoelectron Spectroscopy

  • Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.132-132
    • /
    • 2013
  • Colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has brought new opportunities to unravel the surface structure of working catalysts. Recent studies suggest that surface oxides on transition metal nanoparticles play an important role in determining the catalytic activity of CO oxidation. In this talk, I will outline the recent studies on the influence of surface oxides on Rh, Pt, Ru and Co nanoparticles on the catalytic activity of CO oxidation [1-3]. Transition metal nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. APXPS studies exhibited the reversible formation of surface oxides during oxidizing, reducing, and CO oxidation reaction [4]. General trend is that the smaller nanoparticles exhibit the thicker surface oxides, while the bigger ones have the thin oxide layers. Combined with the nature of surface oxides, this trend leads to the different size dependences of catalytic activity. Such in situ observations of metal nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications. I will also show that the surface oxide can be engineered by using the simple surface treatment such as UV-ozone techniques, which results in changing the catalytic activity [5]. The results suggest an intriguing way to tune catalytic activity via engineering of the nanoscale surface oxide.

  • PDF

Catalytic decomposition of $N_2O$ to develop monopropellant thruster ($N_2O$ 단일 추진제 추력기 개발을 위한 촉매 분해 시험)

  • Jin, Jung-Kun;Kosdaulefov, Assylkhan;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • Catalytic decomposition of nitrous oxide was investigated experimentally. Two noble metal catalyst (Pt, Ir) were chosen to decompose nitrous oxide. Each catalyst was tested with different chamber pressure and preheating temperature. Ir decomposed $N_2O$ at lower temperature ($230^{\circ}C$) and suitable for $N_2O$ decomposition. In addition, the minimum required preheating temperature decreased as the chamber pressure increased. However, deactivation of Ir catalyst was observed during the experiments.

  • PDF

Practical Usage of Low-Temperature Metal Catalyst for the Destruction of Volatile Organic Compounds (VOCs) (휘발성 유기화합물(VOCs) 제거를 위한 저온금속촉매 실용화에 관한 연구)

  • Jung, Sung-Chul;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.397-405
    • /
    • 2012
  • In this study, performance evaluation of newly developed technology for the economical and safe removal of volatile organic compounds (VOCs) coming out from electronic devices washing operation and offensive odor induction materials was made. Metal oxidization catalyst has shown 50% of removal efficiency at the temperature of $220^{\circ}C$. Composite metal oxidization catalyst applied in this study has shown that the actual catalysis has started at the temperature of $100^{\circ}C$. Comprehensive analysis on the catalyst property using Mn-Cu metal oxidization catalyst in the pilot-scale unit was made and the removal efficiency was variable with temperature and space velocity. Full-scale unit developed based on the pilot-scale unit operation has shown 95% of removal efficiency at the temperature of $160^{\circ}C$. Optimum elimination effective rates for the space velocity was found to be $6,000hr^{-1}$. The most appropriate processing treatment range for the inflow concentration of VOCs was between 200 ppm to 4,000 ppm. Catalyst control temperature showed high destruction efficiency at $150{\sim}200^{\circ}C$ degrees Celsius in 90~99%. External heat source was not necessary due to the self-heat reaction incase of VOCs inflow concentration is more than 1,000 ppm. Equipment and fuel costs compared to the conventional RTO/RCO method can be reduced by 50% and 75% respectively. And it was checked when there was poisoning for sulfide and acid gas.

A Study on Removal of NOx in Diesel Engine using Reductive Catalyst (환원촉매를 이용한 디젤엔진 배기가스 중 NOx 저감에 관한 연구)

  • Huang, H.Z.;Hwang, J.W.;Jung, J.Y.;Han, J.H.;Demidiouk, V.I.;Chae, J.O.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2255-2261
    • /
    • 2000
  • To eliminate $NO_x$ in diesel emission. selective catalyst reduction (SCR) was used in real diesel engine. Among the SCR methods, metal oxide and perovskite catalysts were introduced in this paper. The removal efficiencies with various major, promoter catalysts on ${\gamma}-Al_2O_3$ at different reaction temperature were investigated, and $LaCuMnO_x$ catalyst which has high removal efficiency at the temperature of real diesel exhaust gas was selected. $NO_x$ reduction was carried out over these catalysts in the flow-through type reactor using by-pass ($SV=3,300h^{-1}$). Under the given condition to this study, perovskite catalysts showed considerably high removal efficiency and $LaCuMnO_x$ was the best one among these catalysts in the temperature range of $150{\sim}450^{\circ}C$.

  • PDF

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo;Ha, Jong-Keun;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Hye-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4371-4376
    • /
    • 2011
  • In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.

Effect of titanium powder on the bond strength of metal heat treatment (티타늄 파우더가 금속의 열처리 시 결합강도에 미치는 영향)

  • Kim, Sa-Hak;Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.71-79
    • /
    • 2017
  • Purpose: Ni-Cr alloy does not contain Beryllium, causing the metal compound to form oxides in the furnace but by using Titanium as a chemical catalyst the forming of the oxides can be controlled, and by controlling the impurities formed on the metal surface, the possibility of the Ni-Cr alloy bond strength being increased can be analysed. Materials and Methods: Titanium was used as a chemical catalyst in the porcelain for the oxidation of beryllium-free metal (Ni-Cr) alloy. The T1 group, which does not use Titanium power as a chemical catalyst is a reference model for comparison. The T2 group and T3 group used 10 g and 20 g of Titanium power, respectively. They are fabricated to observe the shear bond strength and surface properties. There was no significance when One-way ANOVA analysis/Tukey Honestly Significant Difference Test was conducted for statistical analysis among groups (P > 0.05). Results: Results of measuring the three-point flexural bond strength of the Ni-Cr alloy and thickness of the oxide film. Experiment T3 using 20 g Titanium chemical catalyst: $39.22{\pm}3.41MPa$ and $6.66{\mu}m$, having the highest bond strength and thinness of oxide film. Experiment T2 using 10 g Titanium chemical catalyst: $34.65{\pm}1.39MPa$ and $13.22{\mu}m$. Experiment T1 using no Titanium chemical catalyst: $32.37{\pm}1.91MPa$ and $22.22{\mu}m$. Conclusion: The T2 and T3 experiments using Titanium chemical catalyst showed higher bond strength for the Ni-Cr alloy and lower thickness of oxide film than experiment T1, and the titanium catalyst being able to increase bond strength was observed.

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.

Hydrogenation Properties on MgHx-Sc2O3 Composites by Mechanical Alloying (MgHx-Sc2O3 복합재료의 수소화 특성)

  • Kim, Kyeong-Il;Kim, Yong-Sung;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • Hydrogen energy applications have recognized clean materials and high energy carrier. Accordingly, Hydrogen energy applies for fuel cell by Mg and Mg-based materials. Mg and Mg-based materials are lightweight and low cost materials with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. Therefore one of the most methods to improve kinetics focused on addition transition metal oxide. Addition to transition metal oxide in $MgH_x$ powder produce $MgH_x$-metal oxide composition by mechanical alloy and it analyze XRD, EDS, TG/DSC, SEM, and PCT. This report considers kinetics by transition metal oxide rate and Hydrogen pressure. In this research, we can see behavior of hydriding/dehydriding profiles by addition catalyst (transition metal oxide). Results of PCI make a excellent showing $MgH_x$-5wt.% Sc2O3 at 623K, $MgH_x$-10wt.% $Sc_2O_3$ at 573K.

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF