• Title/Summary/Keyword: Metal dissolution

Search Result 245, Processing Time 0.022 seconds

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Metal Ion Release Behaviour and Cytotoxicity of a Super Stainless Steel (초내식성 스테인레스강의 금속이온용출특성 및 세포적합성)

  • Kim, Cheol-Sang;Park, Jin-Soo;Her, Erk;Khang, Gon
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The toxic metal ion release behaviour and the cytotoxicity of a super stainless steel (S.S.S, 22cr-20Ni -6Mo-0.25N) were investigated The measurement of the amount of static and wear- induced trace metal ion released from the steels was conducted in Hank's balanced salt solution using an electrothermal atomic absdrption spectrometry equiped with Uaphite furnace. And the in vitro cytotoxicity of the materials was assesed in cell culture. The static dissolution rates of Fe and Cr ions from the S.S.S were significantly lower than those of 316L SS. However, the Ni ion release from the S.S.S during the first 4 weeks was yester than that from 316L 55 by 15-45%. Also, the wear-in- duces dissolution rates from the steels were not correlated either with their elemental composition rates or with the static metal ion release rates. The S.S.S did not deteriorate the osteoblasts viability. And no toxic response was observed from the macrophages cultured for 7 days in RFMI 1640 medium immersed with the S.S.S specimens.

  • PDF

Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent (침출제로 황산과 메탄술폰산의 화학적 반응성 비교)

  • Tran, Thanh Tuan;Moon, Hyun Seung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.41-46
    • /
    • 2021
  • Methanesulfonic acid (MSA) can be considered effective in the leaching of metals because of its advantageous physical and chemical properties. The chemical reactivities of MSA and sulfuric acid were compared based on their structures and the dissolution data of Co and Ni metal. The inductive and resonance effects play a vital role in the chemical reactivities of these two acids. The dissolution percentages of Co and Ni in the sulfuric acid solution were higher than those in the MSA solution under the same experimental conditions. Considering the strong acidity of MSA and the high solubility of its metal salts, MSA can be employed as a leaching agent for the recovery of metals.

토양 제염에 있어서 magnetite 용해 거동 연구

  • 원휘준;김민길;김계남;박진호;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.393-396
    • /
    • 2003
  • Soil contains the several kinds of metal oxides. Magnetite in soil may contribute the generation of secondary waste during the decontamination of soil by citric acid. Dissolution of magnetite powders by citric acid was investigated in the pH range between 2.0 and 5.0. The dissolution behaviour of magnetite was well described by the equation, A[1 - $e^{-B(x-c)}$]. The parameters of the equation were optimized by the iteration method, and the physical meaning of each parameter was explained. Concentration of each of the dissociated chemical species of citric acid was calculated using the ionization constants. The dissolution reaction was explained by the concentration of the dissociated chemical species of citric acid.d.

  • PDF

Corrosion Resistance Evaluation in the Co-Cr Alloys for the Full and Removable Partial Denture Metal Frameworks and the Porcelain-fused-to-metal Crown (총의치와 국소의치 금속의치상용 코발트-크롬 합금과 금속소부도재관용 코발트-크롬 합금의 부식저항성 평가)

  • Park, Soo-Chul;Choi, Sung-Mi;Kang, Ji-Hun
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.237-245
    • /
    • 2012
  • Purpose: This study was conducted to evaluate the corrosion resistance of metal ions of alloys and use the results as the dental health data. These were performed by examining the corrosion levels of Co-Cr alloys for the full and removable partial denture metal frameworks and porcelain-fused-to-metal crown, among the dental casting nonprecious alloys. Methods: The alloy specimens (N = 10) were manufactured in $15mm{\times}10mm{\times}1.2mm$ and stored in two types of corrosive solutions at $37^{\circ}C$ for seven days. The metal ions were quantitatively analyzed using the Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: Of the three Co-Cr alloys, the Co ion concentration of the porcelain-fused-to-metal alloy was 1.512 ${\mu}g/cm^2$, which indicated the highest metal ion dissolution. The metal corrosion was higher in the more acidic pH 2.2 solution compared with the pH 4.4 solution. In all three Co-Cr alloys, Co ion dissolution was predominant in the two corrosive solutions. Conclusion: The corrosion resistance of the three Co-Cr alloys was high, indicating a good biocompatibility.

Aluminum Brazing and Its Principle (알루미늄의 브레이징과 원리)

  • Lee, Soon-Jae;Jung, Do-Hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Aluminum alloys have been widely used in many fields such as electronic, structure, aero-space and vehicle industries due to their outstanding thermal and electrical conductivity as well as low cost. However, they have some difficulties for using in brazing process because of the strong oxide layer of $Al_2O_3$ on the surface of Al alloy. In addition, their melting point is similar to that of brazing filler metal resulting in thermal damage of Al alloys. Therefore, it is very important to understand the brazing principles, filler metal and its properties such as wetting, capillary flow and dissolution of base metal in the Al brazing process. This paper reviews the brazing principles, aluminum alloys, and brazing fillers. In the case of brazing principle, some formula was used for calculation of capillary force and the dissolution to obtain the best condition of Al brazing. In addition, the advanced research trends in Al brazing were introduced including thermal treatment, additive for improving property and decreasing melting point in Al brazing process.

In situ growth of Mg-Al hydrotalcite film on AZ31 Mg alloy

  • Song, Yingwei;Chen, Jun;Shan, Dayong;Han, En-Hou
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.12-13
    • /
    • 2012
  • An environmentally friendly method for in situ growth of Mg-Al hydrotalcite (HT) film on AZ31 magnesium alloy has been developed. The growth processes and corrosion resistance of the HT film were investigated. Then the HT film was surface modified by phytic acid solution to further improve the corrosion resistance. The film formation involves the dissolution of AZ31 substrate, adsorption of the ions from solution, nucleation of the precursor, followed by the dissolution of $Al^{3+}$, exchanging of $OH^-$ by $CO{_3}^{2-}$ and growth of the HT film. The HT film is very compact and acts as a barrier against $Cl^-$ attack in the early stage of corrosion, and then the surface of the film is dissolved gradually. This dense HT film can provide effective protection to the AZ31 alloy. The HT film with surface modification by phytic acid presents a self-healing feature and exhibits better corrosion resistance.

  • PDF

Dissolution Phenomenon in BaO-B2O3-ZnO Glass System by Acid Etching (산 에칭에 의한 BaO-B2O3-ZnO계 유리조성물의 용출 현상)

  • Kim, Jae-Myung;Hong, Kyung-Jun;Kim, Nam-Suk;Kim, Hyung-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.33-37
    • /
    • 2006
  • For producing the fine ribs structure of plasma display panel, the metal ions of barrier materials during the etching process should be understood on the etching mechanism with etching conditions. Etching was done on bulk glasses of the $BaO_B_2O_3-ZnO$ system with $HNO_3$ solution at $40^{\circ}C$. The surface structure of glasses and ion dissolution were analyzed by ICP (Inductive Coupled Plasma measurement). The structure and surface of the etched bulk glass were investigated by using scanning electron microscopy and nanoindenter. As a result, Ba (3-35 ppm/min) and Zn (2-27 ppm/min) ions as major components were leached in the solution and the leached layers were found to be phosphor-rich surface layers. A decrease of the bridge oxygen and relative increase of non bridge oxygen in the etched glass were found by X-ray photoelectron spectroscopy.