• Title/Summary/Keyword: Metal anode

Search Result 331, Processing Time 0.023 seconds

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators (3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상)

  • Beom-Hui Lee;Dong-Wan Ham;Ssendagire Kennedy;Jeong-Tae Kim;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.88-96
    • /
    • 2024
  • Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.

Electro-refining Characteristics of PCB-based Copper Anode for the Enrichment of Precious Metals (귀금속 농축을 위한 PCB 기반 양극동의 전해정련 특성)

  • Ahn, Nak-Kyoon;Shim, Hyun-Woo;Park, Kyung-Soo;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.14-22
    • /
    • 2018
  • In this study, scarp of PCB containing copper and precious metals was manufactured as an anode, and electrorefining experiments were conducted on change of $H_2SO_4$ concentration and current density. Through electrolytic refining experiments, the concentration of Cu and slime recovered from each electrode was analyzed, element behavior was confirmed, and current efficiency was also calculated. As the $H_2SO_4$ concentration was increased, the current efficiency and the purity of Cu decreased, but the precious metals in the anode slime were maximally concentrated with 2.0 M $H_2SO_4$. In addition, as the current density was increased, the current efficiency decreased and the purity of Cu showed a tendency to increase, and the precious metals in the anode slime were maximally concentrated with $300A/m^2$. As a result of the pilot scale experiments, the Au content was 8,705 mg/kg, the Ag content was 35,092 mg/kg in the anode slime. As compared with the initial content, Au was concentrated 16 times and Ag concentrated 14 times.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF

Single cell property and numerical analysis of metal-supported solid oxide fuel cell (금속지지체형 고체산화물 연료전지의 단전지 특성 및 전산해석)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2222-2227
    • /
    • 2007
  • Newly structured metal-supported solid oxide fuel cell was fabricated and characterized by impedance analysis and galvanodynamic experiment. Using a cermet adhesive, thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support of which flow channel was fabricated. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ perovskite oxide was used as cathode material. Single cell performance was increased and saturated at operating time to 300hours at 800$^{\circ}C$ because of cathode sintering effect. The sintering effect was reinvestigated by half cell test and exchange current density was measured as 0.005A/$cm^2$. Maximum power density of the cell was 0.09W/$cm^2$ at 800$^{\circ}C$. Numerical analysis was carried out to classify main factors influencing the single cell performances. Compared to experimental IV curve, simulated curve based on experimental parameters such as exchange current density was in good agreement.

  • PDF

Structure of Ti and Al Films Prepared by Cylindrical Sputtering System (원통형 스퍼터링 장치로 제작한 Ti 및 Al 박막구조)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.344-350
    • /
    • 2014
  • Metal films (i.e., Ti, Al and SUH310S) were prepared in a magnetron sputtering apparatus, and their cross-sectional structures were investigated using scanning electron microscopy. The apparatus used consisted of a cylindrical metal target which was electrically grounded, and two anode rings attached to the top and to the bottom of the target. A wire was placed along the center-line of the cylindrical target to provide a substrate. When the electrical potential of the substrate was varied, the metal-film formation rate depended on both the discharge voltage and the electrical potential of the substrate. As we made the magnetic field stronger, the plasma which appeared near the target collected on the plasma wall surface and thereby decreased the bias current. The bias current on the conducting wire was different from that for cation collection. The bias current decreased because the collection of cations decreased when we increased the magnetic-coil current. When the substrate was electrically isolated, the films deposited showed a slightly coarse columnar structure with thin voids between adjacent columns. In contrast, in the case of the grounded substrate, the deposited film did not show any clear columns but instead, showed a densely-packed granular structure. No peeling region was observed between the film and substrate, indicating good adhesion.

Anodic Oxidation of Furfuryl Alcohol Using Metal Oxide Electrodes (금속산화물 전극을 사용한 Furfuryl Alcohol의 양극산화)

  • Yoo, Kwang-Sik;Lee, Yong-Taek
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.482-490
    • /
    • 1992
  • 2,5-dimethoxy-2,5-dihydrofurfuryl alcohol was electrosynthesized from furfuryl alcohol in methanol solution by using three kinds of metal oxide anode. The electrods were prepared by the following process : Thin layer of semiconducting material such as tin(IV)oxide and antimony(III)oxide was made on the titanium base metal in an electric furnace. The titanium metal block with the layer was coated with ${\alpha}-PbO_2$, ${\beta}-PbO_2$, and $MnO_2$ in each electrolytes by anodic deposition, respectively. The lead dioxide electrodes showed better anti-corrosive property than the manganase dioxide electrode. The yield of the product was 92% which is almost the same as the one with conventional platinum electrodes.

  • PDF

Parametric study for enhanced performance of Cu and Ni electrowinning

  • Kim, Joohyun;Kim, Han S.;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • In this study, we performed an electrowinning process for effective removal of metals (Cu and Ni) in solution and their recovery as solid forms. A complete removal of Cu and Ni (1,000 mg/L) was observed during four times recycling test, indicating that our electrowinning system can ensure the efficient metal removal with high stability and durability. In addition, we investigated effect of operation parameters (i.e., concentration of boric acid only for Ni, variation of pH, concentration of electrolyte ($H_2SO_4$), and cell voltage) on the efficiency of metal removal (Cu and Ni) during the electrowinning. The addition of boric acid significantly enhanced removal efficiency of Ni as the concentration of boric acid increased up to 10 g/L. Compared to negligible pH effect (pH 1, 2, and 4) on the Cu removal, we observed the increase in removal efficiency of Ni as the pH increased from 1 to 4. The electrolyte concentration did not significantly influence the removal of Cu and Ni in this study. We also obtained great removal rates of Cu and Ni at 2.5 V and 4.0 V, which were much faster than those at lower voltages. Finally, almost 99% of each Cu and Ni (1,000 mg/L) was selectively removed from the mixture of metals by adjusting pH and addition of boric acid after the completion of Cu removal. The findings in this study can provide a fundamental knowledge about effect of important parameters on the efficiency of metal recovery during the electrowinning.