Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.7.344

Structure of Ti and Al Films Prepared by Cylindrical Sputtering System  

Oh, Chang-Sup (Korea Institute of Science and Technology Information)
Han, Chang-Suk (Department of Defense Science & Technology, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.24, no.7, 2014 , pp. 344-350 More about this Journal
Abstract
Metal films (i.e., Ti, Al and SUH310S) were prepared in a magnetron sputtering apparatus, and their cross-sectional structures were investigated using scanning electron microscopy. The apparatus used consisted of a cylindrical metal target which was electrically grounded, and two anode rings attached to the top and to the bottom of the target. A wire was placed along the center-line of the cylindrical target to provide a substrate. When the electrical potential of the substrate was varied, the metal-film formation rate depended on both the discharge voltage and the electrical potential of the substrate. As we made the magnetic field stronger, the plasma which appeared near the target collected on the plasma wall surface and thereby decreased the bias current. The bias current on the conducting wire was different from that for cation collection. The bias current decreased because the collection of cations decreased when we increased the magnetic-coil current. When the substrate was electrically isolated, the films deposited showed a slightly coarse columnar structure with thin voids between adjacent columns. In contrast, in the case of the grounded substrate, the deposited film did not show any clear columns but instead, showed a densely-packed granular structure. No peeling region was observed between the film and substrate, indicating good adhesion.
Keywords
metal films; magnetron sputtering apparatus; cylindrical target; columnar structure; granular structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. G. Park, M. S. Baek and S. C. Bae, Kor. J. Mat. Res., 9, 163 (1999).
2 Y. Ueda, T. Sugai and Y. Ohtsuka, J. Nucl. Mater., 282, 216 (2000).   DOI
3 A. P. Ehiasarian, C. Reinhard and P. E. Hovsepian, Soc. Vacuum Coaters, 349 (2006).
4 W. Otano, A. O. Otero, J. M. Otano, C. S. Otano, J. J. Santiago and V. M. Pantojas, Mater. Res. Soc. Proc. 948, 91 (2006).
5 J. A. Thornton, Z. Metallkde., 75, 847 (1984).
6 C. H. Bae, J. H. Lee and C. S. Han, J. Kor. Soc. Heat. Treat., 23, 23 (2010).
7 C. S. Oh and C. S. Han, J. Kor. Soc. Heat. Treat., 25, 1 (2012).   DOI
8 J. R. Arthur, R. F. Bunshah and P. J. Call, Mater. Sci. Eng., 53, 137 (1982).   DOI
9 Z. G. Li, Y. X. Wu and S. Miyake, Surf. Coat. Technol., 203, 3661 (2009).   DOI