• Title/Summary/Keyword: Metal Resource

Search Result 201, Processing Time 0.024 seconds

The Efficiency of Bioleaching Rates for Valuable Metal Ions from the Mine Waste Ore using the Adapted Indigenous Acidophilic Bacteria with Cu Ion (Cu 이온에 적응된 토착호산성박테리아를 이용한 폐광석으로부터 미생물용출 효율 향상)

  • Kim, Bong-Ju;Wi, Dae-Woong;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.9-18
    • /
    • 2012
  • This study was carried out to leach valuable metal ions from the mine waste ore using the adapted indigenous bacteria. In order to tolerance the heavy metals, the indigenous bacteria were repeatedly subcultured in the adaptation-medium containing $CuSO_4{\cdot}5H_2O$ for 3 weeks and 6 weeks, respectively. As the adaptation experiment processed, the pH was rapidly decrease in the adaptation-medium of 6 weeks more than the 3 weeks. The result of bioleaching with the adapted bacteria for 42 days, the pH value of leaching-medium in the 3 weeks tend to increased, whereas the pH of the 6 weeks decreased. In decreasing the pH value in the adaptation-medium and in the leaching-medium, it was identified that the indigenous bacteria were adapted $Cu^{2+}$ the ion and the mine waste ores. The contents of Cu, Fe and Zn in the leaching solution were usually higher leached in 6 weeks than 3 weeks due to the adaptation. Considering the bioleaching rates of Cu, Fe and Zn from these leaching solutions, the highest increasing the efficiency metal ion were found to be Fe. Accordingly, it is expected that the more valuable element ions can be leached out from the any mine waste, if the adapted bacteria with heavy metals will apply in future bioleaching experiments.

Application of Sulfate Solvent in Acid Bake-water Leaching System for Valuable Metal Leaching from Sulfide Mineral (황화광물로부터 유용금속 침출을 위한 Acid Bake-water Leaching System 내 황산염 용매제의 적용성)

  • Ko, Chin Surk;Togtokhmaa, B.;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • The objective of this study was to investigate the application of sulfate solvents for the economic and eco-friendly leaching of valuable metals from Au concentrate using an acid bake-water leaching system (AWS). AWS experiments were performed using an electric furnace with various baking temperatures ($100-500^{\circ}C$) and sulfate solvents ($H_2SO_4$, $K_2SO_4$, $(NH_4)_2SO_4$, $MgSO_4$, and $CaSO_4$). The efficiency of the valuable metal leaching increased as the baking temperature was increased to $400^{\circ}C$. Based on the AWS leaching time experiments, the maximum leaching rate occurred with the aqueous $(NH_4)_2SO_4$ solvent. This study demonstrates that aqueous $(NH_4)_2SO_4$ could be used as an effective solvent for valuable metal leaching using an AWS.

A Study on the Correlation between Heavy Metal Content of Cement Products and Waste Used in Cement Industry (시멘트 산업에 투입되는 폐기물과 시멘트 제품의 중금속 함유량과의 상관관계 분석연구)

  • Kim, Yong-Jun;Um, Nam-Il;Kim, Woo-Il;Lee, Young-Kee;Kim, Ki-Heon
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.721-730
    • /
    • 2018
  • We investigated the effects of heavy metals in cement in the last 3 years and the amount of waste in the cement manufacturing process. The result shows that the average $Cr^{6+}$ content in cement products is controlled at 10 mg/kg. Cu and Pb have lower detection tendency in white cement than in ordinary portland cement. In addition, heavy metals such as Cd show a certain level of detection regardless of the input wastes. Copper slag and phosphate gypsum are the main influencing factors on the heavy metals in cement products. In auxiliary fuels, plastics waste and wood waste are considered to affect heavy metals in cement products. Alternative raw materials are considered to be affected by the alternative raw materials managed as byproducts. In the case of supplementary fuels, auxiliary fuels managed as waste instead of auxiliary fuels managed as byproducts affect the heavy metals in cement. This study examined the input amount without considering the heavy metals in each waste. Therefore, the result may vary in different situations, and further research must be conducted to supplement the findings. However, if the heavy-metal contents in the waste are constant, it can be used as a reference material for the control of heavy metals in cement products.

Strategies for the Commercial Development of Seafloor Hydrothermal Deposits in Consideration of International Progress (해저열수광상 상업개발을 위한 국제동향분석과 국가대응전략)

  • Park, Se-Hun;Yang, Hee-Cheol;Lee, Moon-Suk
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.475-482
    • /
    • 2010
  • Hydrothermal deposits on deep-sea floors are expected to provide potential metal resources for future demands. Korea was recently granted a prospecting licence to undertake exploration for hydrothermal metal deposits in the exclusive economic zone (EEZ) of the Kingdom of Tonga in the Pacific Ocean. The Korean Deep Seabed Mining Group (KDSMG), which consists of four Korean companies involved in marine technologies, oil and gas shipping, and smelter industries, has conducted research to evaluate the region's resource potential in cooperation with the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea. Here we present and reflect on the exploration results of these companies and their strategic plans. We also evaluate Research and Development (R&D) progress for the commercial development of seafloor hydrothermal deposits. Our own strategies and prospects for the commercial development of this potential resource are also outlined. We do acknowledge that other potentially important information regarding the amount of ore body, the inside structure, and the metal yields have not yet been clarified sufficiently. As such it is necessary to address these problems through experimental R&D and surveys.

The Leaching of Valuable Metal from Mine Waste Rock by the Adaptation Effect and the Direct Oxidation with Indigenous Bacteria (토착박테리아의 중금속 적응효과와 직접산화작용에 의한 폐광석으로부터 유용금속 용출)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • The aim of this study was leaching valuable metal ions from mine waste rocks which were abandoned mine site using indigenous aerobic bacteria. In order to tolerate the the indigenous aerobic bacteria to the heavy metal ions they were repeatedly adapted in $CuSO_4{\cdot}5H_2O$ environment. As the repeated generation-adaptation progressed, the pH values of the growth-medium were gradually decreased. During bio-leaching experiments with indigenous aerobic bacteria raised in a heavy metal ion environment for 42 days, the pH of the leaching solution was decreased while increasing the adaptation period. The indigeous bacteria were much more active on the surface of Younhwa waste rocks which contained relatively few the chalcopyrite and Cu content than the Goseong mine waste rocks, and also the amount of Cu and Fe ions were leached more in the Younhwa sample(leaching rate of 92.79% and 55.88%, respectively) than the Goseong sample(leaching rate of 66.77% and 21.83%, respectively). Accordingly, it is confirmed that valuable metal ions can be leached from the mine waste rocks, if any indigenous bacteria which inhabits a mine environment site for a long time with heavy metal ions can be used, and these bacteria can be progressively adapted in the growth-solutions containing the target heavy metals.

Isolation and Characterization of Terpene Synthase Gene from Panax ginseng

  • Kim, Yu-Jin;Ham, Ah-Rom;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Dae-Young;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.114-119
    • /
    • 2008
  • Terpene synthase plays a key role in biosynthesis of triterpene saponins (ginsenosides) and is intermediate in the biosynthesis of a number of secondary metabolites. A terpene synthase (PgTPS) cDNA was isolated and characterized from the root of Panax ginseng c.A. Meyer. The deduced amino acid sequence of PgTPS showed a similarity with A. deliciosa (AAX16121) 61%, V. vinifera (AAS66357) 61%, L. hirsutum (AAG41891) 55%, M. truncatula (AAV36464) 52%. And the segment of a terpene synthase gene was amplified by reverse transcriptase-polymerase chain reaction (RTPCR). We studied expression of terpene synthase under stressful conditions like chilling, salt, UV, and heavy metal stress treatment. Expression of PgTPS was increased gradually after exposure to stresses such as chilling, salt, and UV illumination. But its transcription seems to be reduced by cadmium and copper treatment.

Multiform Oxide Optical Materials via the Versatile Pechini-type Sol-Gel Process

  • Lin, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1247-1250
    • /
    • 2008
  • This presentation highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process which uses the common metal salts (nitrates, acetates, chlorides etc) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as cross-linking agent to form a polymeric resin on molecular level, allowing the preparation of many forms of luminescent materials.

  • PDF

Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides

  • Quan Zhe-Xue;Rhee Sung-Keun;Bae Jin-Woo;Baek Jong-Hwan;Park Yong-Ha;Lee Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.232-239
    • /
    • 2006
  • The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.

Preparation and Characterization of the Photocatalysts Transition Metal-Doped Ti-SCM (전이금속을 담지한 Ti-SCM 제조 및 특성연구)

  • Jung, Won-Chae;Hong, Ji-Sook;Suh, Jeong-Kwon;Suh, Dong-Hack
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.445-451
    • /
    • 2010
  • $TiO_2$ shows considerably efficient photoreaction activity under the ultraviolet range but it has disadvantage that there is no activity in the visible light range. In this study, it was tried to find a solution for the problem of this kind of photocatalyst by utilizing transition metal, which can show electronic transition with $TiO_2$ in the visible light area. Photocatalyst was prepared, which can have photocatalytic activity in the wide wavelength range, not only ultraviolet region but also visible light area and prevent the combination of electron and hole hindering the photoreaction. For this purpose, by using the ion exchange method, $TiO_2$ precursor and transition metal precursor were dipped into H typed strong acid ion-exchange resin. And two kind photocatalysts (Ti-M-SCM) in which transition metal and titanium dioxide coexist through the carbonization/activation process was prepared. Moreover, photolytic reaction under the wavelength 254 nm and 365 nm was performed for humic acid (HA) in the continuous reactor in order to estimate the efficiency of produced Ti-M-SCM.

Evaluation on R&D Progress for Manganese Nodule Development and Its Prospects (심해저 망간단괴 개발사업의 국제기술 동향 분석 및 향후 개발 전망)

  • Park, Se-Hun;Park, Seong-Wook;Kang, Gil-Mo
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.477-490
    • /
    • 2005
  • The development of manganese nodule mining technology is very important in order to secure a long-term and stable supply of rare strategic metals. In the twenty years following the R&D activities with the international consortia in the 1970s, studies on mining technologies have been carried out by several national projects in Korea. The current metal prices such as copper, nickel, cobalt, and manganese have been drastically changed since 2002. Rapid economic growth of Asian countries, especially China, have induced the situation. And the possibility of copper shortage is looming just around the comer. Because of the imbalance between production and consumption, copper is fundamentally the most threatened metal in the future in terms of potential metal shortage. Manganese nodules contain a considerable percentage of copper as the future metal resource. Therefore, it is necessary to concentrate our effects on developing these resources. This paper introduces our evaluation of R&D progress for the development of manganese nodules. The issue and role of manganese nodules during the difficult period of a potential future metal shortage period is discussed and its prospect outlined. Also, this paper tried to emphasize the necessity of continuous R&D efforts for the commercial development of such mineral resources.