DOI QR코드

DOI QR Code

Application of Sulfate Solvent in Acid Bake-water Leaching System for Valuable Metal Leaching from Sulfide Mineral

황화광물로부터 유용금속 침출을 위한 Acid Bake-water Leaching System 내 황산염 용매제의 적용성

  • Ko, Chin Surk (Department of Energy and Resource Engineering, Chosun University) ;
  • Togtokhmaa, B. (Department of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 고진석 (조선대학교 에너지.자원공학과) ;
  • 톡토흐마 (조선대학교 에너지.자원공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2018.03.02
  • Accepted : 2018.06.26
  • Published : 2018.06.30

Abstract

The objective of this study was to investigate the application of sulfate solvents for the economic and eco-friendly leaching of valuable metals from Au concentrate using an acid bake-water leaching system (AWS). AWS experiments were performed using an electric furnace with various baking temperatures ($100-500^{\circ}C$) and sulfate solvents ($H_2SO_4$, $K_2SO_4$, $(NH_4)_2SO_4$, $MgSO_4$, and $CaSO_4$). The efficiency of the valuable metal leaching increased as the baking temperature was increased to $400^{\circ}C$. Based on the AWS leaching time experiments, the maximum leaching rate occurred with the aqueous $(NH_4)_2SO_4$ solvent. This study demonstrates that aqueous $(NH_4)_2SO_4$ could be used as an effective solvent for valuable metal leaching using an AWS.

본 연구는 acid bake-water leaching system (AWS)를 이용하여 Au 정광으로부터 경제적이고 친환경적인 유용금속 용출을 위하여 황산염 용매제의 적용성을 파악하는 것이다. AWS 실험은 전기로를 이용하여 다양한 baking 온도($100^{\circ}C{\sim}500^{\circ}C$)와 황산염 용매제($H_2SO_4$, $K_2SO_4$, $(NH_4)_2SO_4$, $MgSO_4$, $CaSO_4$) 조건에서 수행하였다. Baking 온도가 $400^{\circ}C$까지 증가할수록 유용금속의 용출률은 증가하였다. 용출시간에 따른 AWS 실험결과, 최대 용출률 조건은 $(NH_4)_2SO_4$ 용매제이었다. 본 연구를 통하여 $(NH_4)_2SO_4$ 용매제가 AWS를 이용한 유용금속 용출에 있어 효과적인 용매제로 사용가능함을 입증하였다.

Keywords

References

  1. Amankwah, R.K., Khan, A.U., Pickles, C.A., and Yen, W.T. (2005) Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore, Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 114, C30-C36.
  2. Barik, S.P., Park K.H., Parhi, P.K., and Park, J.T. (2012) Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid, Hydrometallurgy, 111-112, 46-51. https://doi.org/10.1016/j.hydromet.2011.10.001
  3. Choi, N.C., Kim, B.J., Cho, K., Lee, S., and Park, C.Y. (2017) Microwave pretreatment for Thiourea leaching for gold concentrate, Metals, 7(10), 404-413. https://doi.org/10.3390/met7100404
  4. Guo, X., Li, D., Park, K.H., Tian, Q., and Wu, Z. (2009) Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process, Hydrometallurgy, 99, 144-150. https://doi.org/10.1016/j.hydromet.2009.07.012
  5. Habashi, F. (2005) Recent advances in the hydrometallurgy of copper, Elsevier, 43p.
  6. Kim, B.J., Cho, K., Choi, N.C., and Park, C.Y. (2016) The Efficiency of Fe Removal Rate from Gold Ore in the Oxidation Zone by Ammonia Leaching, Journal of the mineralogical society of korea, 29(3), 113-122. https://doi.org/10.9727/jmsk.2016.29.3.113
  7. Kim, B.J., Cho, K., Jo, J.Y., Choi, N.C., and Park, C.Y. (2014) The Characteristic of Te Recovery in Gold Concentrate Using Electrolysis, Economic and Environmental Geology, 47(6), 645-655. https://doi.org/10.9719/EEG.2014.47.6.645
  8. Kim, B.J., Cho, K., Oh, S.J., On, H., Kim, B.J., Choi, N.C., and Park, C.Y. (2013) Application of Roasting Pretreatment for Gold Dissolution from the Invisible Gold Concentrate and Mineralogical Interpretation of their Digested Products, Journal of the mineralogical society of korea, 26(1), 45-54. https://doi.org/10.9727/jmsk.2013.26.1.45
  9. Liu, X.W., Feng, Y.L., Li, H.R., Yang, Z.C., and Cai, Z.L. (2012) Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process, International Journal of Minerals, Metallurgy and Materials, 19, 377-383. https://doi.org/10.1007/s12613-012-0567-5
  10. McLaughlin, J. and Agar, G. (1991) Development and application of a first order rate equation for modelling the dissolution of gold in cyanide solution, Minerals Engineering, 4, 1305-1314. https://doi.org/10.1016/0892-6875(91)90174-T
  11. Parhi, P.K., Sethy, T.R., Rout, P.C., and Sarangi, K. (2015) Selective dissolution of copper from copper- chromium spent catalyst by baking-leaching process, Journal of Industrial and Engineering Chemistry, 21, 604-609. https://doi.org/10.1016/j.jiec.2014.03.026
  12. Pickles, C.A. (2009) Microwave in extractive metallurgy: part2-a review of applications, Minerals Engineering, 22, 1112-1118.
  13. Prater, J.D., Queneau, P.B., and Hudson, T.J. (1970) The sulfation of copper-iron sulfides with concentrated sulfuric acid, The Journal of The Minerals, Metals and Materials Society, 22, 23-27.
  14. Safarzadeh, M.S. and Miller, J.D. (2014a) Reaction of enargite (Cu3AsS4) in hot concentrated sulfuric acid under an inert atmosphere. part I: Enargite concentrate, International Journal of Mineral processing, 128, 68-78. https://doi.org/10.1016/j.minpro.2014.02.007
  15. Safarzadeh, M.S. and Miller, J.D. (2014b) Reaction of enargite(Cu3AsS4) in hot concentrated sulfuric acid under an inert atmosphere. part II: high-quality enargite, International Journal of Mineral Processing, 128, 79-85. https://doi.org/10.1016/j.minpro.2014.02.006
  16. Safarzadeh, M.S. and Miller, J.D. (2014c) Reaction of enargite ($Cu_3AsS_4$) in hot concentrated sulfuric acid under an inert atmosphere. part III: Reaction stoichiometry and kinetics, International Journal of Mineral processing, 130, 56-65. https://doi.org/10.1016/j.minpro.2014.06.001
  17. Safarzadeh, M.S., Moats, M.S., and Miller, J.D. (2012) Acid bake-leach process for the treatment of enargite concentrates, Hydrometallurgy, 119, 30-39.
  18. Spedden, H.R., Prater, J.D., Queneau, P.B., Foster, G.G.. and Pickles W.S. (1971) Acid bake-leach-flotation treatment of offgrade molybdenite, Metallurgical and Materials Transactions B, 2(11), 3115-3122. https://doi.org/10.1007/BF02814963
  19. Uslu, T. and Atalay, U. (2003) Microwave heating of coal for enhanced magnetic removal of pyrite, Fuel Processing Technology, 85, 21-29.