Preparation and Characterization of the Photocatalysts Transition Metal-Doped Ti-SCM

전이금속을 담지한 Ti-SCM 제조 및 특성연구

  • Jung, Won-Chae (Environment & Resource Center, Korea Research Institute of Chemical Technology) ;
  • Hong, Ji-Sook (Environment & Resource Center, Korea Research Institute of Chemical Technology) ;
  • Suh, Jeong-Kwon (Environment & Resource Center, Korea Research Institute of Chemical Technology) ;
  • Suh, Dong-Hack (Department of Chemical Engineering, Hanyang University)
  • 정원채 (한국화학연구원 환경자원연구센터) ;
  • 홍지숙 (한국화학연구원 환경자원연구센터) ;
  • 서정권 (한국화학연구원 환경자원연구센터) ;
  • 서동학 (한양대학교 화학공학과)
  • Received : 2010.04.16
  • Accepted : 2010.06.04
  • Published : 2010.08.10

Abstract

$TiO_2$ shows considerably efficient photoreaction activity under the ultraviolet range but it has disadvantage that there is no activity in the visible light range. In this study, it was tried to find a solution for the problem of this kind of photocatalyst by utilizing transition metal, which can show electronic transition with $TiO_2$ in the visible light area. Photocatalyst was prepared, which can have photocatalytic activity in the wide wavelength range, not only ultraviolet region but also visible light area and prevent the combination of electron and hole hindering the photoreaction. For this purpose, by using the ion exchange method, $TiO_2$ precursor and transition metal precursor were dipped into H typed strong acid ion-exchange resin. And two kind photocatalysts (Ti-M-SCM) in which transition metal and titanium dioxide coexist through the carbonization/activation process was prepared. Moreover, photolytic reaction under the wavelength 254 nm and 365 nm was performed for humic acid (HA) in the continuous reactor in order to estimate the efficiency of produced Ti-M-SCM.

광범위하게 사용되는 $TiO_2$는 자외선 영역 하에서는 상당히 효율적인 광반응 활성을 보이나 가시광 영역에서는 활성이 없는 단점을 가지고 있다는 것은 잘 알려져 있는 사실이다. 본 연구에서는 이러한 광촉매가 가지는 문제점을 보완하고자 하였다. 즉, $TiO_2$와 함께 가시광선 영역에서 전자전이를 보일 수 있는 전이금속 등을 활용하여 광반응을 저해하는 전자와 정공과의 재결합을 방지하고, 자외선 영역뿐만 아니라 가시광선 영역까지 넓은 파장 범위에서 광촉매 활성을 가질 수 있는 광촉매를 제조하였다. 이를 위하여 이온교환방법을 이용하여 H형 강산성 이온교환수지에 $TiO_2$ 전구체를 담지 시킨 다음, 전이금속 전구체 등을 담지 시키고 탄화/활성화 과정을 거쳐 전이금속과 이산화티탄이 동시에 존재하는 2종 광촉매(Ti-M-SCM)를 제조하였다. 또한 제조된 Ti-M-SCM의 광분해 효율을 평가하기 위하여 유동식 반응기에서 휴믹산을 대상으로 하여 파장 254 nm와 365 nm 하에서의 광분해 반응을 실시하였다.

Keywords

References

  1. H. S. Park, D. H. Kim, S. J. Kim, and K. S. Lee, Journal of the Korean Institute of Metals and Materials, 42, 11 (2004).
  2. S. J. Kim and S. D. Park, Journal of the Korean Institute of Metals and Materials, 39, 214 (2001).
  3. P. C. Singer, Water Science and Technology, 40, 25 (1999).
  4. L. E. Bennett and M. Drikas, Water Research, 27, 1209 (1993). https://doi.org/10.1016/0043-1354(93)90013-8
  5. J. M. Herrmann, Catalysis Today, 24, 157 (1995). https://doi.org/10.1016/0920-5861(95)00005-Z
  6. J. Matos, J. Laine, and J. M. Herrmann, Journal of Catalysis, 200, 10 (2001). https://doi.org/10.1006/jcat.2001.3191
  7. J. Matos, J. Laine, and J. M. Herrmann, Applied Catalysis B : Environmental, 18, 281 (1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  8. J. M. Herrmann, J. Matos, J. Disdier, C. Guillard, J. Laine, S. Malato, and J. Blanco, Catalysis Today, 54, 255 (1999). https://doi.org/10.1016/S0920-5861(99)00187-X
  9. S. X. Liu, X. Y. Chen, and X. Chen, Journal of Hazardous Materials, 143, 257 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.026
  10. H. Yoneyama and T. Torimoto, Catalysis Today, 58, 133 (2000). https://doi.org/10.1016/S0920-5861(00)00248-0
  11. J. J. Lee, J. K. Suh, J. S. Hong, and J. M. Lee, Korean Chemical Engineering Research, 44, 375 (2006).
  12. J. Y. Choi, Master's Thesis, Kumoh National Institute of Technology, Gumi, Gyeongbuk, Korea (2007).
  13. P. Vijayan, C. Mahendiran, C. Suresh, and K. Shanthi, Catalyst Today, 141, 220 (2009). https://doi.org/10.1016/j.cattod.2008.04.016
  14. C. Y. Yun, M. S. Han, J. J. Lee, M. S. Kang, J. W. Lee, and J. H. Lee, Korean Society of Environmental Engineers, 665 (2004).
  15. J. S. Kim, H. J. Ha, S. K. Lee, J. K. Lee, and I. K. Kim, Korea Society on Water Quality, 705 (2004).
  16. X. Fu, L. A. Clark, Q. Yang, and M. A. Anderson, Environmetal Science and Technology, 30, 647 (1996). https://doi.org/10.1021/es950391v
  17. N. Serpone, D. Lawless, J. Disdier, and J. M. Herrmann, Langmuir, 10, 643 (1994). https://doi.org/10.1021/la00015a010
  18. Octave Levenspiel, Chemical Reaction Engineering, 3rd ed., 45, John Wiley & Sons, Inc., New York (1999).