Browse > Article

Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides  

Quan Zhe-Xue (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University)
Rhee Sung-Keun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology, Chungbuk National University)
Bae Jin-Woo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Baek Jong-Hwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Park Yong-Ha (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Lee Sung-Taik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.2, 2006 , pp. 232-239 More about this Journal
Abstract
The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.
Keywords
Aerobic; cyanide; metal-complexed cyanide; DGGE; diversity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Clescerl, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington
2 Ibekwe, A. M. and C. M. Grieve. 2004. Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol. Ecol. 48: 239- 248   DOI   ScienceOn
3 Malik, A., M. Sakamoto, T. Ono, and K. Kakii. 2003. Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. J. Biosci. Bioeng. 96: 10-15   DOI
4 Rollinson, G., R. Jones, M. P. Meadows, R. E. Harris, and C. J. Knowles. 1987. The growth of a cyanide-utilizing strain of Pseudomonas fluorescens in liquid culture on nickel cyanide as a source of nitrogen. FEMS Microbiol. Lett. 40: 199-205   DOI
5 Volotovskky, V. and N. Kim. 2003. Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J. Microbiol. Biotechnol. 13: 373-377
6 Wang, C. C., C. M. Lee, and L. J. Chen. 2004. Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 39: 1767-1779   DOI   ScienceOn
7 Yilmaz, E. I. 2003. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 154: 409- 415   DOI   ScienceOn
8 Quan, Z. X., J. W. Bae, S. K. Rhee, Y. G. Cho, and S. T. Lee. 2004. Toxicity and degradation of metal-complexed cyanide by a bacterial consortium under sulfate-reducing conditions. Biotechnol. Lett. 26: 1007-1011   DOI   ScienceOn
9 White, D. M., T. A. Pilon, and C. Woolard. 2000. Biological treatment of cyanide containing wastewater. Water Res. 34: 2105-2109   DOI   ScienceOn
10 Gurbuz, F., H. Ciftci, A. Akcil, and A. G. Karahan. 2004. Microbial detoxification of cyanide solutions: A new biotechnological approach using algae. Hydrometallurgy 72: 167-176   DOI   ScienceOn
11 Aronstein, B. N., A. Maka, and V. J. Srivastava. 1994. Chemical and biological removal of cyanides from aqueous and soil-containing systems. Appl. Microbiol. Biotechnol. 41: 700-707   DOI
12 Rossello-Mora, R. A., M. Wagner, and R. Amann. 1995. The abundance of Zoogloea ramigera in sewage treatment plants. Appl. Environ. Microbiol. 61: 702-707
13 Kim, B. S., H. M. Oh, H. J. Kang, S. S. Park, and J. S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
14 Whitlock, J. L. 1990. The advantages of biodegradation of cyanides. J. Metals 41: 46-47
15 Akcil, A. 2003. Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnol. Adv. 21: 501-511   DOI   ScienceOn
16 Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural communities. Curr. Opin. Microbiol. 2: 317-322   DOI   ScienceOn
17 Bose, P., M. A Bose, and S. Kumar. 2002. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Adv. Environ. Res. 7: 179-195   DOI   ScienceOn
18 Eichner, C. A., R. W. Erb, K. N. Timmis, and I. Wagner- Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109
19 Hugenholtz, P., G. W. Tyson, R. I. Webb, A. M. Wagner, and L. L. Blackall. 2001. Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67: 411-419   DOI   ScienceOn
20 Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 56: 695-700
21 Morozzi, G. and G. Cenci. 1978. Comparison of the toxicity of some metals and their tetracyanide complexes on the respiration of non acclimated activated sludges. Zentralbl. Bakteriol. 167: 478-488
22 Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol. 64: 4396-4402
23 Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana
24 Ahn, Y. and S. Park. 2003. Microbial and physicochemical monitoring of granular sludge during start-up of thermophilic UASB reactor. J. Microbiol. Biotechnol. 13: 378-384
25 Patil, Y. B. and K. M. Paknikar. 1999. Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes. Biotechnol. Lett. 21: 913-919   DOI   ScienceOn
26 Ingvorsen, K., B. Hjer-Pedersen, and S. E. Godtfredsen. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 57: 1783-1789
27 Bae, J. W., J. J. Kim, C. O. Jeon, K. Kim, J. J. Song, S. G. Lee, H. Poo, C. M. Jung, Y. H. Park, and M. H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008-1012
28 Kakii, K., K. Tsuchiya, K. Otozuki, E. Toriumi, and K. Watanabe. 2000. Mechanisms of microbial aggregation in activated sludge and biofilm processes. In: Proc. Reg. Symp. on Chemical Engineering, December 11-13, Singapore, bp1.1
29 Smith, N. R., Z. Yu, and W. W. Mohn. 2003. Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown. Water Res. 37: 4873-4884   DOI   ScienceOn
30 Gijzen, H. J., E. Bernal, and H. Ferrer. 2000. Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Water Res. 34: 2447-2454   DOI   ScienceOn
31 Silva-Avalos, J., M. G. Richmond, D. Nagappan, and D. A. Kunz. 1990. Degradation of the metal cyano-complex of tetracyano-nickelate (II) by cyanide utilizing bacterial isolates. Appl. Environ. Microbiol. 56: 3664-3670