• Title/Summary/Keyword: Metal Implant

Search Result 230, Processing Time 0.025 seconds

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF METAL-CERAMIC VERSUS COMPOSITE RESIN-VENEERED METAL CROWNS IN CEMENT-RETAINED IMPLANT-SUPPORTED CROWNS UNDER VERTICAL COMPRESSIVE LOAD

  • Pae, Ahran;Jeon, Kyung-A;Kim, Myung-Rae;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.295-302
    • /
    • 2007
  • Statement of problem. Fracture of the tooth-colored superstructure material is one of the main prosthetic complications in implant-supported prostheses. Purpose. The purpose of this in vitro study was to compare the fracture strength between the cement-retained implant-supported metal-ceramic crowns and the indirect composite resinveneered metal crowns under the vertical compressive load. Material and methods. Standard implants of external type (AVANA IFR 415 Pre-mount; Osstem Co., Busan, Korea) were embedded in stainless steel blocks perpendicular to their long axis. Customized abutments were fabricated using plastic UCLA abutments (Esthetic plastic cylinder; Osstem Co., Busan, Korea). Thirty standardized copings were cast with non-precious metal (Rexillium III, Pentron, Walling ford, Conn., USA). Copings were divided into two groups of 15 specimens each (n = 15). For Group I specimens, metal-ceramic crowns were fabricated. For Group II specimens, composite resin-veneered (Sinfony, 3M-ESPE, St. Paul, MN, USA) metal crowns (Sinfony-veneered crowns) were fabricated according to manufacturer's instructions. All crowns were temporary cemented and vertically loaded with an Instron universal testing machine (Instron 3366, Instron Corp., Norwood, MA, USA). The maximum load value (N) at the moment of complete failure was recorded and all data were statistically analyzed by independent sample t-test at the significance level of 0.05. The modes of failure were also investigated with visual analysis. Results. The fracture strength of Sinfony-veneered crowns ($2292.7{\pm}576.0N$) was significantly greater than that of metal-ceramic crowns ($1150.6{\pm}268.2N$) (P < 0.05). With regard to the failure mode, Sinfony-veneered crowns exhibited adhesive failure, while metal-ceramic crowns tended to fracture in a manner that resulted in combined failure. Conclusion. Sinfony-veneered crowns demonstrated a significantly higher fracture strength than that of metal-ceramic crowns in cement-retained implant-supported prostheses.

A STUDY ON THE COMPLETE RETRIEVAL SYSTEM OF THE CEMENTATION TYPE IMPLANT ABUTMENT (손상 없이 영구 접착 보철물을 제거할 수 있는 cementation type 임플랜트 지대주 개발에 관한 연구)

  • Choi Jin-Ho;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.597-607
    • /
    • 2004
  • Purpose: This study was peformed to investigate the retrievability of the cemented crown from the cementation type implant abutment. Material and method: The cementation type implant abutments (NEOBIOTECH implant abutment regular, 3 degree taper, 10mm length, 4mm diameter, Ti grade III, machined surface. Hwasung, Kyunggi-do) and cemented crowns were divided into 3 groups, depending on their hole angles formed in the crowns for their retrievability. The abutments and crowns were luted with 4 kinds of cements and separation test using metal wedge was executed with Instron 4465 Universal Testing Machine and the maximum impact force of the modified crown ejector was measured. Results and conclusion : 1. All of the cementation type implant abutments and cemented crowns were separated with relatively small force by metal wedge. 2. The retrieving force was minimum when the metal wedge was applied perpendicular to the axis of abutment. 3. The force for retrieving crowns from abutments was maximum in resin cement group, and reduced in orders of zinc phosphate cement, glass ionomer cement and zinc oxide eugenol cement. 4. The maximum force obtained by the crown ejector was higher than the retrieval force in ZOE and GI cement and lower than that in ZPC and resin cement. 5. If it has similar conditions clinically, the cemented crowns luted with 2 types of cements (ZOE, GI cement) can be safely retrieved from the cementation type implant abutments by the modified crown ejector.

Effect of repetitive firing on passive fit of metal substructure produced by the laser sintering in implant-supported fixed prosthesis

  • Altintas, Musa Aykut;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2020
  • PURPOSE. The aim of the present study was to investigate the passive fit of metal substructure after repetitive firing processes in implant-supposed prosthesis. MATERIALS AND METHODS. Five implants (4 mm diameter and 10 mm length) were placed into the resin-based mandibular model and 1-piece of screw-retained metal substructure was produced with the direct metal laser sintering (DMSL) method using Co-Cr compound (n = 10). The distance between the marked points on the multiunit supports and the marginal end of the substructure was measured using a scanning electron microscope (SEM) at each stage (metal, opaque, dentin, and glaze). 15 measurements were taken from each prosthesis, and 150 measurements from 10 samples were obtained. In total, 600 measurements were carried out at 4 stages. One-way ANOVA test was used for statistical evaluation of the data. RESULTS. When the obtained marginal range values were examined, differences between groups were found to be statistically significant (P<.001). The lowest values were found in the metal stage (172.4 ± 76.5 ㎛) and the highest values (238.03 ± 118.92 ㎛) were determined after glaze application. When the interval values for groups are compared with pairs, the differences between metal with dentin, metal with glaze, opaque with dentin, opaque with glaze, and dentin with glaze were found to be significant (P<.05), whereas the difference between opaque with metal was found to be insignificant (P=.992). CONCLUSION. Passive fit of 1-piece designed implant-retained fixed prosthesis that is supported by multiple implants is negatively affected by repetitive firing processes.

Pseudotumor and Subsequent Implant Loosening as a Complication of Revision Total Hip Arthroplasty with Ceramic-on-Metal Bearing: A Case Report

  • Naik, Lokesh Gudda;Shon, Won Yong;Clarke, I.C.;Moon, Jun-Gyu;Mukund, Piyush;Kim, Sang-Min
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2018
  • Pseudotumors are not uncommon complications after total hip arthroplasty (THA) and may occur due to differences in bearing surfaces of the head and the liner ranging from soft to hard articulation. The most common causes of pseudotumors are foreign-body reaction, hypersensitivity and wear debris. The spectrum of pseudotumor presentation following THA varies greatly-from completely asymptomatic to clear implant failure. We report a case of pseudo-tumor formation with acetabular cup aseptic loosening after revision ceramic-on-metal hip arthroplasty. The patient described herein underwent pseudotumor excision and re-revision complex arthroplasty using a trabecular metal shell and buttress with ceramic-on-polyethylene THA. Surgeons should be aware of the possibility of a pseudotumor when dealing with revisions to help prevent rapid progression of cup loosening and implant failure, and should intervene early to avoid complex arthroplasty procedures.

The effects of physical decontamination methods on zirconia implant surfaces: a systematic review

  • Tan, Nathan Chiang Ping;Khan, Ahsen;Antunes, Elsa;Miller, Catherine M;Sharma, Dileep
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.298-315
    • /
    • 2021
  • Purpose: Peri-implantitis therapy and implant maintenance are fundamental practices to enhance the longevity of zirconia implants. However, the use of physical decontamination methods, including hand instruments, polishing devices, ultrasonic scalers, and laser systems, might damage the implant surfaces. The aim of this systematic review was to evaluate the effects of physical decontamination methods on zirconia implant surfaces. Methods: A systematic search was conducted using 5 electronic databases: Ovid MEDLINE, PubMed, Scopus, Web of Science, and Cochrane. Hand searching of the OpenGrey database, reference lists, and 6 selected dental journals was also performed to identify relevant studies satisfying the eligibility criteria. Results: Overall, 1049 unique studies were identified, of which 11 studies were deemed suitable for final review. Air-abrasive devices with glycine powder, prophylaxis cups, and ultrasonic scalers with non-metal tips were found to cause minimal to no damage to implantgrade zirconia surfaces. However, hand instruments and ultrasonic scalers with metal tips have the potential to cause major damage to zirconia surfaces. In terms of laser systems, diode lasers appear to be the most promising, as no surface alterations were reported following their use. Conclusion: Air-abrasive devices and prophylaxis cups are safe for zirconia implant decontamination due to preservation of the implant surface integrity. In contrast, hand instruments and ultrasonic scalers with metal tips should be used with caution. Recommendations for the use of laser systems could not be fully established due to significant heterogeneity among included studies, but diode lasers may be the best-suited system. Further research-specifically, randomised controlled trials-would further confirm the effects of physical decontamination methods in a clinical setting.

Tailoring the Static Characteristics of Implanted VCSELs with the Implant and Metal Aperture Radii (임플랜트 및 금속전극 반경에 따른 임플랜트 VCSEL 정특성의 변화)

  • Kim, Tae-Yong;Kim, Sang-Bae;Park, Bun-Jae;Son, Jeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.37-41
    • /
    • 2004
  • We have formulated an empirical analytic model for the static characteristics of implanted vertical-cavity surface-emitting lasers (VCSELs). Specifically, we have derived analytic formulas for the threshold current, slope efficiency, dynamic resistance, and the output power and forward voltage at the operation current of 12 ㎃ in terms of the implant and metal-aperture radii by fitting the measured results. The radii of the metal aperture and implant mask of the 850 nm VCSELs range from 4 to 12.5 ${\mu}{\textrm}{m}$ and 7 to 17.5 ${\mu}{\textrm}{m}$ respectively. The model shows the way of tailoring the VCSEL characteristics by changing the mask dimensions only.

A Numerical Study on the Response of the Tibial Component in Total Knee Arthroplasty to Longitudinal Impact (인공무릎관절 전치환술에 있어 축방향 충격에 의한 Tibial Component의 응답 특성 분석 연구)

  • 조용균;조철형;최재봉;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.503-511
    • /
    • 1998
  • In this study, the stress distribution for different tibial components was observed In order to Investigate the load transfer and potential failure mechanism of the tibial components subjected to dynamic impact loading and also to evacuate the effect of bone-implant bonding conditions on the implant system. The 3-dimensional finite element models included an intact tibia, cemented metal-backed tibial component, uncemented metal-blocked tibial component, cemented all-polyethylene tibial component, and metal-backed component with a debonded bone/stem interface. The results showed that the cemented metal-hocked component Induced slightly higher peak stress at stem tip than the uncemented component. The peak stress of the all-polyethylene tibia1 component at stem trip showed about half thats of metal-backed tibial components. The all-polyethylene component showed a similar dynamic response to intact tibia. In case of debonded bone/stem interface, the peak stress below the metal tray was three times Higher than that of the fully bonded interface and unstable stress distribution at the stem tip was observed with time, which causes another adverse bone apposition and implant loosening. Thus, the all-polyethylene tibial component bonded fully to the surrounding bone might be most desirable system under an impact loading.

  • PDF

FLEXURAL STRENGTH OF IMPLANT FIXED PROSTHESIS USING FIBER REINFORCED COMPOSITE (섬유성 강화 컴포지트를 사용한 임플랜트 고정성 보철물의 굴곡강도)

  • Kang, Kyung-Hee;Kwon, Kung-Rock;Lee, Sung-Bok;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.526-536
    • /
    • 2006
  • Statement of problem : Use of fiber composite technology as well as development of nonmetal implant prosthesis solved many problems due to metal alloy substructure such as corrosion. toxicity, difficult casting, expensiveness and esthetic limit. After clinical and laboratory test, we could find out that fiber-reinforced composite prostheses have good mechanical properties and FRC can make metal-free implant prostheses successful. Purpose : The purpose of this study is to evaluate the flexural strength of implant fixed prosthesis using fiber reinforced composite. Material and methods : 2-implant fixture were placed in second premolar and second molar area in edentulous mandibular model, and their abutments were placed, and bridge prostheses using gold, PFG, Tescera, and Targis Vectris were fabricated. Tescera was made in 5 different designs with different supplements. Group I was composed by 3 bars with diameter 1.0mm and 5 meshes, 2 bars and 5 meshes for Group II, 1 bar and 5 meshes for Group III, and only 5 meshes were used for Group IV. And Group V is composed by only 3 bars. Resin (Tescera) facing was made to buccal part of pontic of gold bridge. All of gold and PFG bridges were made on one model, 5 Targis Vectris bridges were also made on one model, and 25 Tescera bridges were. made on 3 models. Each bridge was attached to the test model by temporary cement and shallow depression was formed near central fossa of the bridge pontic to let 5 mm metal ball not move. Flexual strength was marked in graph by INSTRON. Results : The results of the study are as follows. The initial crack strength was the highest on PFG. and in order of gold bridge Tescera I, Tescera II, Targis vectris, Tescera IV, Tescera III, and Tescera V. The maximum strength was the highest on gold bridge, and in order of PFG, Tescera I, Tescera IV Tescera II, Targis vectris, Tescera III, and Tescera V. Conculsions : The following conclusions were drawn from the results of this study. 1. Flextural strength of implant prosthesis using fiber reinforced composite was higher than average posterior occlusal force. 2. In initial crack strength, Tescera I was stronger than Tescera V, and weaker than PFG. 3. Kinds and number of auxillary components had an effect on maximum strength, and maximum strength was increased as number of auxillary components increased. 4 Maximum strength of Tescera I was higher than Targis vectris, and lower than PFG.

Accuracy of a proposed implant impression technique using abutments and metal framework

  • Lee, Hyeok-Jae;Lim, Young-Jun;Kim, Chang-Whe;Choi, Jung-Han;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • PURPOSE. This study compared the accuracy of an abutment-framework (A-F) taken with open tray impression technique combining cement-on crown abutments, a metal framework and resin cement to closed tray and resin-splinted open tray impression techniques for the 3-implant definitive casts. The effect of angulation on the accuracy of these 3 techniques was also evaluated. MATERIAL AND METHODS. Three definitive casts, each with 3 linearly positioned implant analogs at relative angulations 0, 30, and 40 degrees, were fabricated with passively fitted corresponding reference frameworks. Ten impressions were made and poured, using each of the 3 techniques on each of the 3 definitive casts. To record the vertical gap between reference frameworks and analogs in duplicate casts, a light microscope with image processing was used. Data were analyzed by two-way analysis of variance and the Tukey test. RESULTS. The open tray techniques showed significantly smaller vertical gaps compare to closed tray technique (P < .05). The closed tray and the resin-splinted open tray technique showed significantly different vertical gaps according to the angulation of implant (P < .05), but the A-F impression technique did not (P > .05). CONCLUSION. The accuracy of the A-F impression technique was superior to that of conventional techniques, and was not affected by the angulation of the implants.

Effect of various casting alloys and abutment composition on the marginal accuracy of bar-type retainer (합금의 종류와 지대주 성분이 바형 유지 장치의 변연 적합도에 미치는 영향)

  • Lee, Yun-Hui;Song, Young-Gyun;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • Purpose: The object of this study was to determine if the low-priced alloy and metal UCLA abutment could be available for manufacturing bar-retained framework of implant prosthesis. Materials and methods: Bar structure was classified into 4 groups, The specimen of group 1 and 2 were based on casting high noble metal alloys and noble metal alloys with gold UCLA abutment. The specimen of group 3 and 4 were based on casting noble metal alloys and base metal alloys with metal UCLA abutment. Cast bar structure was installed in an acrylic resin model and only the screw on the hexed abutment side was tightened to 20 Ncm. On the opposite side, vertical discrepancy was measured with stereo microscope from front, back, and lateral side of the implant-abutment interface. One-way ANOVA was performed to analyze the marginal fit discrepancy. Results: One-way ANOVA test showed significant differences among all groups ($P$<.05) except for Group 1 and 3. Among them, difference between Group 1 and 2 was noticeable. Measured vertical discrepancies were all below $70{\mu}m$ except to Group 2. Conclusion: Base metal alloy and metal UCLA abutment could be used as an alternative to high-priced gold alloy for implant bar-retained framework.