• 제목/요약/키워드: Metal Catalyst

검색결과 798건 처리시간 0.029초

몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구 (Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes)

  • 오기석;유현석;이기백;최진섭
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

Carbon nanotubes synthesis using diffusion and premixed flame methods: a review

  • Mittal, Garima;Dhand, Vivek;Rhee, Kyong Yop;Kim, Hyeon-Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2015
  • In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.

Corrosion Protection from Inhibitors and Inhibitor Combinations Delivered by Synthetic Ion Exchange Compound Pigments in Organic Coatings

  • Chrisanti, S.;Ralston, K.A.;Buchheit, R.G.
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.212-218
    • /
    • 2008
  • Inorganic ion exchange compounds (IECs) including hydrotalcites and bentonite clays are a well known classes of layered mixed metal hydroxides or silicates that demonstrate ion exchange properties. These compounds have a range of applications from water purification to catalyst supports. The use of synthetic versions of these compounds as environmentally friendly additives to paints for storage and release of inhibitors is a new and emerging application. In this paper, the general concept of storage and release of inhibiting ions from IEC-based particulate pigments added to organic coatings is presented. The unique aspects of the IEC structure and the ion exchange phenomenon that form the basis of the storage and release characteristic are illustrated in two examples comprising an anion exchanging hydrotalcite compound and a cation exchanging bentonite compound. Examples of the levels of corrosion protection imparted by use of these types of pigments in organic coatings applied to aluminum alloy substrates is shown. How corrosion inhibition translates to corrosion protection during accelerated exposure testing by organic coatings containing these compounds is also presented.

Effect of FTO coated on stainless steel bipolar plate for PEM fuel cells

  • 박지훈;장원영;변동진;이중기
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.55.2-55.2
    • /
    • 2009
  • A polymer electrolyte membrane (PEM) fuel cell has been getting large interest as a typical issue in useful applications. The PEMFC is composed of a membrane, catalyst and the bipolar plate. SnOx:F films on SUS316 stainless steel were prepared as a function of substrate with using electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) in order to achieve the corrosion-resistant and low contact resistance bipolar plates for PEM fuel cells. The SnOx:F films coated on SUS316 substrate at surface plasma treatment for excellent stability, before/after heat treatment for good crystalline structure and microwave power for were characterized by X-ray diffraction (XRD), auger electron microscopy (AES) and field emission-scanning electron microscopy (FE-SEM). The SnOx:F film coated on SUS316 substrate with various process parameters were able to observe optimum interfacial contact resistance (ICR) and corrosion resistance. It can be concluded that fluorine-doping content plays an important function in electrical property and characteristic of corrosion-protective film.

  • PDF

스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과 (A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply)

  • 박석주;이동근
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.563-571
    • /
    • 2006
  • 스테인리스 스틸 메쉬 표면을 환원 전처리하여 그 표면상에 직접 탄소나노튜브 또는 탄소나노섬유와 같은 VGCF (vapor grown carbon fiber) 나노물질을 합성 성장시켰다. 수소 가스를 이용하여 스테인리스 스틸 메쉬를 환원 처리함으로써, 금속 표면상에 bi-modal 분포의 작은 촉매입자와 큰 촉매입자들이 함께 생성되었다. 환원된 스테인리스 스틸 메쉬로부터 VGCF의 합성 시, 수소 가스가 공급되지 않은 경우는 작은 촉매입자로부터 탄소나노튜브들이 주로 성장되었으나, 특정 량의 수소 가스가 공급될 경우 큰 촉매입자로부터 탄소나노섬유들이 주로 성장되었다.

Improvement of Plasma Reactor Performance for Hydrogen Generation

  • Pavel, Kostyuk;Park, J.Y.;Kim, J.S.;Park, S.H.;Kim, Y.C.;Jeong, M.G.;Lee, H.W.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.519-520
    • /
    • 2006
  • Research was performed to increase the efficiency of a plasma reactor for $H_2$ yield. In the preceding studies $H_2$ was increased by adding Ni as a transitional metal catalyst and $TiO_2$ as a photocatalyst. In these experiments, it was found that distilled water, discharge frequency, and electrode configuration had a significant impact on $H_2$ generation. A substantial amount of hydrogen yield was observed at 2 kHz of discharge frequency and 12 kV of applied voltage. Within this favorable discharge conditions, the weight rate of $TiO_2$ and Ni powders was investigated. Plasma phenomenon was measured by electrical, optical and acoustical devices. It was found that emitted light, electric current and acoustical signals acquired from the discharge demonstrated systematical correlation. Changing the electrode's configuration allowed discharge distribution along the perimeter of the electrode's tip, which increased the density of streamers and plasma energy loadings, as the value of inception voltage for the discharge propagation decreased.

  • PDF

층상 이중 수산화물 나노물질의 성장 제어기술 연구동향 (Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures)

  • 전찬우;박일규
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.514-522
    • /
    • 2018
  • Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.

용액연소법으로 합성한 Ni/Ce0.9Gd0.1O2-x와 Cu/Ce0.9Gd0.1O2-x 촉매의 메탄올 수증기 개질 특성 연구 (A Study on the Characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x Catalysts for Methanol Steam Reforming Synthesized by Solution Combustion Process)

  • 이정훈
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.209-219
    • /
    • 2019
  • Methanol is a liquid fuel which could also be produced from renewable energy sources and has appreciably high energy density. In this work, we investigated the application of $Ce_{0.9}Gd_{0.1}O_{2-x}$ supported Cu and Ni catalysts for hydrogen production via methanol steam reforming. Catalysts were synthesized by solution combustion synthesis. The prepared catalysts with various active materials and Cu loading amounts were tested in a reactor at $200-300^{\circ}C$, 0-5 barg range and steam to methanol molar ratio was 1.5. The catalytic properties of Cu and Ni were compared, and the catalytic performance was shown to depend on the amounts of metal loading and operating conditions such as reaction temperature and pressure.

녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거 (Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation)

  • 장희진;권기훈;윤광석;송호철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.