DOI QR코드

DOI QR Code

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Hyun-Jung (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Park, Soo-Jin (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2011.09.03
  • Accepted : 2011.09.17
  • Published : 2011.09.30

Abstract

We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

Keywords

References

  1. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  3. U. Kasavajjula, C. Wang and A. J. Appleby, J. Power Sources, 163, 1003 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
  4. M. G. Kim and J. Cho, Adv. Funct. Mater., 19, 1497 (2009). https://doi.org/10.1002/adfm.200801095
  5. P. G. Bruce, B. Scrosati and J.-M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008). https://doi.org/10.1002/anie.200702505
  6. A. Manthiram, A. V. Murugan, A. Sarkar and T. Muraliganth, Energy Environ. Sci., 1, 621 (2008). https://doi.org/10.1039/b811802g
  7. C. Liu, F. Li, L.-P. Ma and H.-M. Cheng, Adv. Mater., 22, E28 (2010). https://doi.org/10.1002/adma.200903328
  8. Y. Okinaka and M. Hoshino, Gold Bull., 31, 3 (1998). https://doi.org/10.1007/BF03215469
  9. G. Oskam, J. G. Long, A. Natarajan and P. C. Searson, J. Phys. D, 31, 1927 (1998). https://doi.org/10.1088/0022-3727/31/16/001
  10. K. Q. Peng, A. J. Lu, R. Q. Zhang and S. T. Lee, Adv. Funct. Mater., 18, 3026 (2008). https://doi.org/10.1002/adfm.200800371
  11. A. M. Wilson, J. N. Reimers, E. W. Fuller and J. R. Dahn, Solid State Ionics, 74, 249 (1994). https://doi.org/10.1016/0167-2738(94)90217-8
  12. C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi and W. Z. Li, J. Electrochem. Soc., 145, 2751 (1998). https://doi.org/10.1149/1.1838709
  13. Y.-S. Hu, R. Demir-Cakan, M.-M. Titirici, J.-O. Müller, R. Schlögl, M. Antonietti and J. Maier, Angew. Chem. Int. Ed., 47, 1645 (2008). https://doi.org/10.1002/anie.200704287
  14. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, Nat. Mater., 9, 353 (2010). https://doi.org/10.1038/nmat2725
  15. H. Lee and J. Cho, Nano Lett.,7, 2638 (2007). https://doi.org/10.1021/nl071022n
  16. H. Kim, B. Han, J. Choo and J. Cho, Angew. Chem. Int. Ed., 47, 10151 (2008). https://doi.org/10.1002/anie.200804355
  17. M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009). https://doi.org/10.1021/nl902058c
  18. H. Ma, F. Cheng, J.-Y. Chen, J.-Z. Zhao, C.-S. Li, Z.-L. Tao and J. Liang, Adv. Mater., 19, 4067 (2007). https://doi.org/10.1002/adma.200700621
  19. Y.-M. Kang, J.-Y. Go, S.-M. Lee and W.-U. Choi, Electrochem. Commun., 9, 1276 (2007). https://doi.org/10.1016/j.elecom.2007.01.019

Cited by

  1. Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesis vol.138, pp.12, 2016, https://doi.org/10.1021/jacs.5b12667
  2. Efficient Nanostructuring of Silicon by Electrochemical Alloying/Dealloying in Molten Salts for Improved Lithium Storage pp.00448249, 2018, https://doi.org/10.1002/ange.201809646
  3. Efficient Nanostructuring of Silicon by Electrochemical Alloying/Dealloying in Molten Salts for Improved Lithium Storage pp.14337851, 2018, https://doi.org/10.1002/anie.201809646