• Title/Summary/Keyword: Metal 3D Printing

Search Result 137, Processing Time 0.027 seconds

Wear of 3D printed and CAD/CAM milled interim resin materials after chewing simulation

  • Myagmar, Gerelmaa;Lee, Jae-Hyun;Ahn, Jin-Soo;Yeo, In-Sung Luke;Yoon, Hyung-In;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.144-151
    • /
    • 2021
  • PURPOSE. The purpose of this in vitro study was to investigate the wear resistance and surface roughness of three interim resin materials, which were subjected to chewing simulation. MATERIALS AND METHODS. Three interim resin materials were evaluated: (1) three-dimensional (3D) printed (digital light processing type), (2) computer-aided design and computer-aided manufacturing (CAD/CAM) milled, and (3) conventional polymethyl methacrylate interim resin materials. A total of 48 substrate specimens were prepared. The specimens were divided into two subgroups and subjected to 30,000 or 60,000 cycles of chewing simulation (n = 8). The wear volume loss and surface roughness of the materials were compared. Statistical analysis was performed using one-way analysis of variance and Tukey's post-hoc test (α=.05). RESULTS. The mean ± standard deviation values of wear volume loss (in mm3) against the metal abrader after 60,000 cycles were 0.10 ± 0.01 for the 3D printed resin, 0.21 ± 0.02 for the milled resin, and 0.44 ± 0.01 for the conventional resin. Statistically significant differences among volume losses were found in the order of 3D printed, milled, and conventional interim materials (P<.001). After 60,000 cycles of simulated chewing, the mean surface roughness (Ra; ㎛) values for 3D printed, milled, and conventional materials were 0.59 ± 0.06, 1.27 ± 0.49, and 1.64 ± 0.44, respectively. A significant difference was found in the Ra value between 3D printed and conventional materials (P=.01). CONCLUSION. The interim restorative materials for additive and subtractive manufacturing digital technologies exhibited less wear volume loss than the conventional interim resin. The 3D printed interim restorative material showed a smoother surface than the conventional interim material after simulated chewing.

Full mouth rehabilitation utilizing computer guided implant surgery and CAD/CAM (Computer guided implant surgery와 CAD/CAM을 활용한 전악 수복 증례)

  • Kim, Sungjin;Han, Jung-Suk;Kim, Sung-Hun;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Computer aided design and manufacturing and implant surgery using a guide template improve restoration-driven implant treatment procedures. This case utilized those digital technologies to make definitive prostheses for a patient. According to the work flow of digital dentistry, cone beam computed tomography established the treatment plan, which was followed to make the guide template for implant placement. The template guided the implants to be installed as planned. The customized abutments and surveyed fixed restorations were digitally designed and made. The metal framework of the removable partial denture was cast from resin pattern using an additive manufacturing technique, and the artificial resin teeth were replaced with the zirconia onlays for occlusal stability. These full mouth rehabilitation procedures provided functionally and aesthetically satisfactory results for the patient.

An Image Characteristics of Metal Movable Type Printing on One Hundred Poets of the Tang Dynasty by the Measurement of 3D Digital Microscope (3D 디지털 현미경으로 측정한 당백가시 인쇄본의 형상 특징)

  • Kim, Heakyoung;Okada, Yoshihiro
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • The ancient paper document we chose as a case study for our research is "One Hundred Poets of the Tang Dynasty", which is housed in the Ryukoku University Library. The purpose of this research is to introduce a method to analyze the surface roughness and microstructure at a high resolution. In addition, we attempt to quantitatively measure the surface unevenness of the types and curve structure. We used a tridimensional digital microscopy as a non-contact and a non-destructive method to study ancient cultural paper. The information contained in the paper may be lost in the process of applying strong pressure to clean and lining or press. However, this microscopic measurement method can non-destructively analyze a large amount of data in old printed books. Moreover, it enables observing them directly with reflected light. Therefore, this method may be useful for collecting printed information remaining on the surface of the paper.

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

Synthesis of Carbonyl Iron-reinforced Polystyrene by High Energy Ball Milling

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Jin-Chun;Kim, Young-Soo;Kim, Young-Hyuk;Nazarenko, Olga B.
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.276-281
    • /
    • 2016
  • Carbonyl iron (CI) is successfully incorporated as an additive into a polystyrene (PS) matrix via a highenergy ball milling method, under an n-hexane medium with volume fractions between 1% and 5% for electromagnetic interference shielding applications by the combination of magnetic CI and an insulating PS matrix. The morphology and the dispersion of CI are investigated by field emission scanning electron microscopy, which indicates a uniform distribution of CI in the PS matrix after 2 h of milling. The thermal behavior results indicate no significant degradation of the PS when there is a slight increase in the onset temperature with the addition of CI powder, when compared to the as-received PS pellet. After milling, there are no interactions between the CI and the PS matrix, as confirmed by Fourier transformed infrared spectroscopy. In this study, the milled CI-PS powder is extruded to make filaments, and can have potential applications in the 3-D printing industry.

Late reconstruction of extensive orbital floor fracture with a patient-specific implant in a bombing victim

  • Smeets, Maximiliaan;Snel, Robin;Sun, Yi;Dormaar, Titiaan;Politis, Constantinus
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.353-357
    • /
    • 2020
  • Fractures of the orbital floor and walls are among the most frequent maxillofacial fractures. Virtual three-dimensional (3D) planning and use of patient-specific implants (PSIs) could improve anatomic and functional outcomes in orbital reconstruction surgery. The presented case was a victim of a terrorist attack involving improvised explosive devices. This 58-year-old female suffered severe wounds caused by a single piece of metal from a bomb, shattering the left orbital floor and lateral orbital wall. Due to remaining hypotropia of the left eye compared to the right eye, late orbital floor reconstruction was carried out with a personalised 3D printed titanium implant. We concluded that this technique with PSI appears to be a viable method to correct complex orbital floor defects. Our research group noted good aesthetic and functional results one year after surgery. Due to the complexity of the surgery for a major bony defect of the orbital floor, it is important that the surgery be executed by experienced surgeons in the field of maxillofacial traumatology.

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.

Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing (3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods (다양한 CAD/CAM 방식으로 제작한 금속하부구조물 간의 변연 및 내면 적합도 비교 연구)

  • Jeong, Seung-Jin;Cho, Hye-Won;Jung, Ji-Hye;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.211-218
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the accuracy of four different metal copings fabricated by CAD/CAM technology and to evaluate clinical effectiveness. Materials and methods: Composite resin tooth of the maxillary central incisor was prepared for a metal ceramic crown and duplicated metal die was fabricated. Then scan the metal die for 12 times to obtain STL files using a confocal microscopy type oral scanner. Metal copings with a thickness of 0.5 mm and a cement space of $50{\mu}m$ were designed on a CAD program. The Co-Cr metal copings were fabricated by the following four methods: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). Silicone replica technique was used to measure marginal and internal discrepancies. The data was statistically analyzed with One-way analysis of variance and appropriate post hoc test (Scheffe test) (${\alpha}=.05$). Results: Mean marginal discrepancy was significantly smaller in the Group WM ($27.66{\pm}9.85{\mu}m$) and Group MS ($28.88{\pm}10.13{\mu}m$) than in the Group RP ($38.09{\pm}11.14{\mu}m$). Mean cervical discrepancy was significantly smaller in the Group MS than in the Group RP. Mean axial discrepancy was significantly smaller in the Group WM and Group MS then in the Group RP and Group SLM. Mean incisal discrepancies was significantly smaller in the Group RP than in all other groups. Conclusion: The marginal and axial discrepancies of the Co-Cr coping fabricated by the Wax pattern milling and Milling/Sintering method were better than those of the other groups. The marginal, cervical and axial fit of Co-Cr copings in all groups are within a clinically acceptable range.

Solution-Processed Indium Oxide Transistors

  • Facchetti, Antonio;Kim, Hyun-Sung;Byrne, Paul D.;Marks, Tobin J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.995-997
    • /
    • 2009
  • $In_2O_3$ thin-film transistors (TFTs) were fabricated on various dielectrics [$SiO_2$ and self-assembled nanodielectrics (SANDs)] by spin-coating a $In_2O_3$ film precursor solution consisting of methoxyethanol (solvent), ethanolamine (EAA, base), and $InCl_3$ as the $In^{3+}$ source. Importantly, an optimized film microstructure characterized by the high-mobility $In_2O_3$ 004 phase, is obtained only within a well-defined base: $In^{3+}$ molar ratio. The greatest electron mobilities of ~ 44 $cm^2$, for EAA:$In^{3+}$ molar ratio = 10, $V^{-1}s^{-1}$, is measured for $n^+$-Si/SAND/$In_2O_3$/Au devices. This result combined with the high $I_{on}:I_{off}$ ratios of ~ $10^6$ and very low operating voltages (< 5 V) is encouraging for high-speed applications.

  • PDF