• Title/Summary/Keyword: Metabolomic analysis

Search Result 63, Processing Time 0.028 seconds

$^1H$ NMR-Based Urinary Metabolic Profiling of Gender and Diurnal Variation in Healthy Korean Subjects (성별 및 채뇨 시각별 $^1H$ NMR 기반 뇨 대사체 프로파일링 연구)

  • Jeong, Jin-Young;Hwang, Geum-Sook;Park, Jong-Chul;Kim, Dong-Hyun;Ha, Mi-Na
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Objectives : This study was undertaken to examine the metabolomic changes due to gender and diurnal variation at sampling time and to identify an appropriate time point for urine sampling in epidemiologic studies using metabolomic profiles. Methods : Urine samples were collected twice a day (morning and afternoon) from 20 healthy Korean adults after fasting for 8 hours. The metabolomic assay was investigated using $^1H$ NMR spectroscopy coupled with the principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The metabolites responsible for differentiation between groups were identified through the loading plot of PLS-DA and quantified using Chenomx NMR Suite with a 600 MHz library. Results : Metabolites responsible for differentiation in gender and sampling time were creatinine, trimethyl anine oxide (TMAO), hippurate, mannitol, citrate and acetoacetate. Dimethylamine showed difference only as a factor of diurnal time. The level of creatinine was higher in men compared to women, and the levels of citrate, TMAO, hippurate, mannitol, and acetoacetate were higher in women compared to men. The levels of creatinine, TMAO, hippurate, dimethylamine and mannitol were higher in the morning rather than the afternoon while those of citrate and acetoacetate were higher in the afternoon rather than the morning. Conclusions : Since urinary metabolomic profiles varied by gender and diurnal cycle, urine sampling should be performed at the same time point for all participants in epidemiologic studies using metabolomic profiles.

Metabolomic approach for evaluating drug response

  • Jung, Byung-Hwa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.11-15
    • /
    • 2007
  • Metabolomics is an emerging technology which makes it possible to evaluate change of biological system in response to the physiological, environmental alterations. It has advantages in the simplicity and sensitivity to analyze metabolites since the researcher can use cutting edge instrument, such as mass spectrometry and simple sample preparation method compared to genomics or proteomics. Nowadays this technology has been tried in pharmaceutical area to investigate toxicity and efficacy of drug candidates and drugs in preclinical test. The metabolomic applications on the pharmaceutics for early prediction on toxicity and efficacy are described in this presentation. The multivariate analysis to get metabolic fingerprinting and its relations with the physiological changes are investigated with several drugs. Feasibility of metabolomic application for pharmaceutical area would be suggested from those researches.

  • PDF

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.

Screening of the liver, serum, and urine of piglets fed zearalenone using a NMR-based metabolomic approach

  • Jeong, Jin Young;Kim, Min Seok;Jung, Hyun Jung;Kim, Min Ji;Lee, Hyun Jeong;Lee, Sung Dae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.447-454
    • /
    • 2018
  • Zearalenone (ZEN), a mycotoxin produced by Fusarium in food and feed, causes serious damage to the health of humans and livestock. Therefore, we compared the metabolomic profiles in the liver, serum, and urine of piglets fed a ZEN-contaminated diet using proton nuclear magnetic resonance ($^1H-NMR$) spectroscopy. The spectra from the three different samples, treated with ZEN concentrations of 0.8 mg/kg for 4 weeks, were aligned and identified using MATLAB. The aligned data were subjected to discriminating analysis using multivariate statistical analysis and a web server for metabolite set enrichment analysis. The ZEN-exposed groups were almost separated in the three different samples. Metabolic analysis showed that 28, 29, and 20 metabolites were profiled in the liver, serum, and urine, respectively. The discriminating analysis showed that the alanine, arginine, choline, and glucose concentrations were increased in the liver. Phenylalanine and tyrosine metabolites showed high concentrations in serum, whereas valine showed a low concentration. In addition, the formate levels were increased in the ZEN-treated urine. For the integrated analysis, glucose, lactate, taurine, glycine, alanine, glutamate, glutamine, and creatine from orthogonal partial least squares discriminant analysis (OPLS-DA) were potential compounds for the discriminating analysis. In conclusion, our findings suggest that potential biomarker compounds can provide a better understanding on how ZEN contaminated feed in swine affects the liver, serum, and urine.

Metabolomic Response of Chlamydomonas reinhardtii to the Inhibition of Target of Rapamycin (TOR) by Rapamycin

  • Lee, Do Yup;Fiehn, Oliver
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.923-931
    • /
    • 2013
  • Rapamycin, known as an inhibitor of Target of Rapamycin (TOR), is an immunosuppressant drug used to prevent rejection in organ transplantation. Despite the close association of the TOR signaling cascade with various scopes of metabolism, it has not yet been thoroughly investigated at the metabolome level. In our current study, we applied mass spectrometric analysis for profiling primary metabolism in order to capture the responsive dynamics of the Chlamydomonas metabolome to the inhibition of TOR by rapamycin. Accordingly, we identified the impact of the rapamycin treatment at the level of metabolomic phenotypes that were clearly distinguished by multivariate statistical analysis. Pathway analysis pinpointed that inactivation of the TCA cycle was accompanied by the inhibition of cellular growth. Relative to the constant suppression of the TCA cycle, most amino acids were significantly increased in a time-dependent manner by longer exposure to rapamycin treatment, after an initial down-regulation at the early stage of exposure. Finally, we explored the isolation of the responsive metabolic factors into the rapamycin treatment and the culture duration, respectively.

Metabolic Profiling of Eccentric Exercise-Induced Muscle Damage in Human Urine

  • Jang, Hyun-Jun;Lee, Jung Dae;Jeon, Hyun-Sik;Kim, Ah-Ram;Kim, Suhkmann;Lee, Ho-Seong;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.199-210
    • /
    • 2018
  • Skeletal muscle can be ultrastructurally damaged by eccentric exercise, and the damage causes metabolic disruption in muscle. This study aimed to determine changes in the metabolomic patterns in urine and metabolomic markers in muscle damage after eccentric exercise. Five men and 6 women aged 19~23 years performed 30 min of the bench step exercise at 70 steps per min at a determined step height of 110% of the lower leg length, and stepping frequency at 15 cycles per min. $^1H$ NMR spectral analysis was performed in urine collected from all participants before and after eccentric exercise-induced muscle damage conventionally determined using a visual analogue scale (VAS) and maximal voluntary contraction (MVC). Urinary metabolic profiles were built by multivariate analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) using SIMCA-P. From the OPLS-DA, men and women were separated 2 hr after the eccentric exercise and the separated patterns were maintained or clarified until 96 hr after the eccentric exercise. Subsequently, urinary metabolic profiles showed distinct trajectory patterns between men and women. Finally, we found increased urinary metabolites (men: alanine, asparagine, citrate, creatine phosphate, ethanol, formate, glucose, glycine, histidine, and lactate; women: adenine) after the eccentric exercise. These results could contribute to understanding metabolic responses following eccentric exercise-induced muscle damage in humans.

Metabolomic Analysis of Ethyl Acetate and Methanol Extracts of Blueberry (Ethyl Acetate와 Methanol을 이용한 블루베리 추출물 대사체 분석)

  • Jo, Young-Hee;Kim, Sugyeong;Kwon, Da-Ae;Lee, Hong Jin;Choi, Hyung-Kyoon;Auh, Joong-Hyuck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.419-424
    • /
    • 2014
  • Metabolite profiling of blueberry (cultivar "Spartan") was performed by extraction using different solvents, methanol and ethyl acetate, through metabolomic analysis using LC-MS/MS. Unsupervised classification method (PCA) and supervised prediction model (OPLS-DA) provided good categorization of metabolites according to the extraction solvents. Metabolites of the anthocyanin family, including delphinidin hexoside, delphinidin, 5-O-feruloylquinic acid, malvidin hexoside, malvidin-3-arabinoside, petunidin-3-arabinoside, and petunidin hexoside, were mainly detected in methanol fractions, whereas those of the flavonoid family, including chlorogenic acid, chlorogenic acid dimer, 6,8-di-C-arabinopyranosyl-luteolin, and luteolin were successfully prepared in the ethyl acetate fraction. Thus, metabolomic analysis of blueberry extracts allows for the simple profiling of whole and distinctive metabolites for future applications.

Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review

  • Harlina, Putri Widyanti;Maritha, Vevi;Musfiroh, Ida;Huda, Syamsul;Sukri, Nandi;Muchtaridi, Muchtaridi
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.744-761
    • /
    • 2022
  • The liquid chromatography mass spectrometry (LC-MS)-based metabolomic and lipidomic methodology has great sensitivity and can describe the fingerprint of metabolites and lipids in pork and beef. This approach is commonly used to identify and characterize small molecules such as metabolites and lipids, in meat products with high accuracy. Since the metabolites and lipids can be used as markers for many properties of a food, they can provide further evidence of the foods authenticity claim. Chromatography coupled to mass spectrometry is used to separate lipids and metabolites from meat samples. The research data usually is compared to lipid and metabolite databases and evaluated using multivariate statistics. LC-MS instruments directly connected to the metabolite and lipid databases software can be used to assess the authenticity of meat products. LC-MS has good selectivity and sensitivity for metabolomic and lipidomic analysis. This review highlighted the combination of metabolomics and lipidomics can be used as a reference for analyzing authentication meat products.

Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

  • Park, Hee-Won;In, Gyo;Kim, Jeong-Han;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.

Effect of Animal-Welfare Environment on the Metabolomic Properties of Breast and Thigh Meat from Two Broiler Strains (동물복지 사육환경이 두 육계 품종의 가슴육 및 다리육의 대사체학적 특성에 미치는 효과)

  • Lee, Dongheon;Jung, Jong Hyun;Jo, Cheorun
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.239-253
    • /
    • 2021
  • This study investigates the metabolomic changes in breast and thigh meat from Cobb and Ross 308 chickens regarding the rearing environment. One-day-old Cobb and Ross broilers were raised for 35 days in conventional and animal welfare farms with, amongst others, different floor sizes, stock densities, and ammonia concentrations. One-dimensional 1H nuclear magnetic resonance, orthogonal partial least squares-discriminant analysis (OPLS-DA), and pathway analyses were performed to analyze the metabolomic properties of broiler meat. For breast meat, only those from the Ross strain could be separated according to the environment in the OPLS-DA plot. Ross breast meat from animal welfare farms showed significantly higher acetate, anserine, creatine, and inosine monophosphate content than those from conventional farms (P<0.05). In contrast, for thigh meat, the Cobb strain was differentiated using OPLS-DA. The contents of five metabolites, such as glucose and lactate, were higher in thigh meat from animal welfare farms; however, nine metabolites, including seven free amino acids, were lower compared to those from conventional farms (P<0.05). Pathway analysis was performed to interpret the biological changes in chicken meat based on environmental factors. The results indicated that the animal welfare environment led to significant changes in four metabolic pathways in Ross breast meat and in 20 metabolic pathways in Cobb thigh meat (P<0.05). In conclusion, the animal welfare environment could influence the metabolomic properties of Ross breast meat and Cobb thigh meat, which may affect the sensory quality of meat.