Browse > Article
http://dx.doi.org/10.5487/TR.2018.34.3.199

Metabolic Profiling of Eccentric Exercise-Induced Muscle Damage in Human Urine  

Jang, Hyun-Jun (College of Pharmacy, Dankook University)
Lee, Jung Dae (Division of Toxicology, College of Pharmacy, Sungkyunkwan University)
Jeon, Hyun-Sik (Department of Kinesiologic Medical Science, Graduate School, Dankook University)
Kim, Ah-Ram (Department of Kinesiologic Medical Science, Graduate School, Dankook University)
Kim, Suhkmann (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Lee, Ho-Seong (Department of Kinesiologic Medical Science, Graduate School, Dankook University)
Kim, Kyu-Bong (College of Pharmacy, Dankook University)
Publication Information
Toxicological Research / v.34, no.3, 2018 , pp. 199-210 More about this Journal
Abstract
Skeletal muscle can be ultrastructurally damaged by eccentric exercise, and the damage causes metabolic disruption in muscle. This study aimed to determine changes in the metabolomic patterns in urine and metabolomic markers in muscle damage after eccentric exercise. Five men and 6 women aged 19~23 years performed 30 min of the bench step exercise at 70 steps per min at a determined step height of 110% of the lower leg length, and stepping frequency at 15 cycles per min. $^1H$ NMR spectral analysis was performed in urine collected from all participants before and after eccentric exercise-induced muscle damage conventionally determined using a visual analogue scale (VAS) and maximal voluntary contraction (MVC). Urinary metabolic profiles were built by multivariate analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) using SIMCA-P. From the OPLS-DA, men and women were separated 2 hr after the eccentric exercise and the separated patterns were maintained or clarified until 96 hr after the eccentric exercise. Subsequently, urinary metabolic profiles showed distinct trajectory patterns between men and women. Finally, we found increased urinary metabolites (men: alanine, asparagine, citrate, creatine phosphate, ethanol, formate, glucose, glycine, histidine, and lactate; women: adenine) after the eccentric exercise. These results could contribute to understanding metabolic responses following eccentric exercise-induced muscle damage in humans.
Keywords
Metabolomic analysis; Skeletal muscle; Eccentric exercise; Sex-dependent patterns;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tee, J.C., Bosch, A.N. and Lambert, M.I. (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med., 37, 827-836.   DOI
2 Byrne, C., Twist, C. and Eston, R. (2004) Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med., 34, 49-69.   DOI
3 Asp, S., Daugaard, J.R. and Richter, E.A. (1995) Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J. Physiol., 482, 705-712.   DOI
4 Asp, S., Rohde, T. and Richter, E.A. (1997) Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content. J. Appl. Physiol., 83, 1482-1485.   DOI
5 Asp, S., Daugaard, J.R., Kristiansen, S., Kiens, B., Richter, E.A. (1998) Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise. J. Physiol., 509, 305-313.   DOI
6 Asp, S., Daugaard, J.R., Rohde, T., Adamo, K. and Graham, T. (1999) Muscle glycogen accumulation after a marathon: roles of fiber type and pro- and macroglycogen. J. Appl. Physiol., 86, 474-478.   DOI
7 Brown, S., Day, S. and Donnelly, A. (1999) Indirect evidence of human skeletal muscle damage and collagen breakdown after eccentric muscle actions. J. Sports Sci., 17, 397-402.   DOI
8 Reid, M.B., Shoji, T., Moody, M.R. and Entman, M.L. (1992) Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J. Appl. Physiol., 73, 1805-1809.   DOI
9 Son, D.O., Satsu, H. and Shimizu, M. (2005) Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett., 579, 4671-4677.   DOI
10 Tidball, J.G. (2005) Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, R345-R353.   DOI
11 Mangino, M.J., Murphy, M.K., Grabau, G.G. and Anderson, C.B. (1991) Protective effects of glycine during hypothermic renal ischemia-reperfusion injury. Am. J. Physiol., 261, F841-F848.
12 Becker, A., Fritz-Wolf, K., Kabsch, W., Knappe, J., Schultz, S. and Volker Wagner, A.F. (1999) Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat. Struct. Biol., 6, 969-975.   DOI
13 Dashko, S., Zhou, N., Compagno, C. and Piskur, J. (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res., 14, 826-832.   DOI
14 Doi, Y. and Ikegami, Y. (2014) Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilizationin the Enterococcus faecalis strain W11. J. Bacteriol.,196, 2472-2480.   DOI
15 Rush, G.F. and Ponsler, G.D. (1991) Cephaloridine-induced biochemical changes and cytotoxicity in suspensions of rabbit isolated proximal tubules. Toxicol. Appl. Pharmacol., 109, 314-326.   DOI
16 Ascher, E., Hanson, J.N., Cheng, W., Hingorani, A. and Scheinman, M. (2001) Glycine preserves function and decreases necrosis in skeletal muscle undergoing ischemia and reperfusion injury. Surgery, 129, 231-235.   DOI
17 Ham, D.J., Murphy, K.T., Chee, A., Lynch, G.S. and Koopman, R. (2014) Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clin. Nutr., 33, 448-458.   DOI
18 Evans, W.J., Meredith, C.N., Cannon, J.G., Dinarello, C.A., Frontera, W.R., Hughes, V.A., Jones, B.H. and Knuttgen, H.G. (1986) Metabolic changes following eccentric exercise in trained and untrained men. J. Appl. Physiol., 61, 1864-1868.   DOI
19 Stauber, W.T. (1989) Eccentric action of muscles: physiology, injury, and adaptation. Exerc. Sport Sci. Rev., 17, 157-185.
20 Costill, D.L., Pascoe, D.D., Fink, W.J., Robergs, R.A., Barr, S.I. and Pearson, D. (1990) Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol., 69, 46-50.   DOI
21 Kirwan, J.P., Hickner, R.C., Yarasheski, K.E., Kohrt, W.M., Wiethop, B.V. and Holloszy, J.O. (1992) Eccentric exercise induces transient insulin resistance in healthy individuals. J. Appl. Physiol., 72, 2197-2202.
22 Nosaka, K. and Clarkson, P.M. (1995) Muscle damage following repeated bouts of high force eccentric exercise. Med. Sci. Sports Exerc., 27, 1263-1269.
23 Selkow, N.M., Day, C., Liu, Z., Hart, J.M., Hertel, J. and Saliba, S.A. (2012) Microvascular perfusion and intramuscular temperature of the calf during cooling. Med. Sci. Sports Exerc., 44, 850-856.   DOI
24 Semark, A., Noakes, T.D., St Clair, G.A. and Lambert, M.I. (1999) The effect of a prophylactic dose of flurbiprofen on muscle soreness and sprinting performance in trained subjects. J. Sports Sci., 17, 197-203.   DOI
25 Sorichter, S., Puschendorf, B. and Mair, J. (1999) Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc. Immunol. Rev., 5, 5-21.
26 Tuominen, J.A., Ebeling, P., Bourey, R., Koranyi, L., Lamminen, A., Rapola, J., Sane, T., Vuorinen-Markkola, H. and Koivisto, V.A. (1996) Postmarathon paradox: insulin resistance in the face of glycogen depletion. Am. J. Physiol., 270, E336-E343.
27 Brancaccio, P., Lippi, G. and Maffulli, N. (2010) Biochemical markers of muscular damage. Clin. Chem. Lab. Med., 48, 757-767.
28 Chung, Y.L., Rider, L.G., Bell, J.D., Summers, R.M., Zemel, L.S., Rennebohm, R.M., Passo, M.H., Hicks, J., Miller, F.W. and Scott, D.L. (2005) Juvenile dermatomyositis disease activity collaborative study G. Muscle metabolites, detected in urine by proton spectroscopy, correlate with disease damage in juvenile idiopathic inflammatory myopathies. Arthritis Rheum., 53, 565-570.   DOI
29 Miles, M.P., Andring, J.M., Pearson, S.D., Gordon, L.K., Kasper, C., Depner, C.M. and Kidd, J.R. (2008) Diurnal variation, response to eccentric exercise, and association of inflammatory mediators with muscle damage variables. J. Appl. Physiol., 104, 451-458.   DOI
30 Oosterom, D.L. and Betjes, M.G. (2006) Exertion-related abnormalities in the urine. Ned. Tijdschr. Geneeskd., 150, 606-610.
31 Huerta-Alardin, A.L., Varon, J. and Marik, P.E. (2005) Bench-to-bedside review: rhabdomyolysis -- an overview for clinicians. Crit. Care, 9, 158-169.   DOI
32 Khan, F.Y. (2009) Rhabdomyolysis: a review of the literature. Neth. J. Med., 67, 272-283.
33 Duchen, M.R., Valdeolmillos, M., O'Neill, S.C. and Eisner, D.A. (1990) Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J. Physiol., 424, 411-426.   DOI
34 Duncan, C.J. (1987) Role of calcium in triggering rapid ultrastructural damage in muscle: a study with chemically skinned fibres. J. Cell Sci., 87, 581-594.
35 Armstrong, R.B., Warren, G.L. and Warren, J.A. (1991) Mechanisms of exercise-induced muscle fibre injury. Sports Med., 12, 184-207.   DOI
36 Busch, W.A., Stromer, M.H., Goll, D.E. and Suzuki, A. (1972) $Ca^{2+}$-specific removal of Z lines from rabbit skeletal muscle. J. Cell Biol., 52, 367-381.   DOI
37 Ra, S.G., Maeda, S., Higashino, R., Imai, T. and Miyakawa, S. (2014) Metabolomics of salivary fatigue markers in soccer players after consecutive games. Appl. Physiol. Nutr. Metab., 39, 1120-1126.   DOI
38 Baird, M.F., Graham, S.M., Baker, J.S. and Bickerstaff, G.F. (2012) Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab., 2012, 960363.
39 Barding, G.A., Jr., Salditos, R. and Larive, C.K. (2012) Quantitative NMR for bioanalysis and metabolomics. Anal. Bioanal. Chem., 404, 1165-1179.   DOI
40 Jordan, K.W., Nordenstam, J., Lauwers, G.Y., Rothenberger, D.A., Alavi, K., Garwood, M. and Cheng, L.L. (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis. Colon. Rectum., 52, 520-525.   DOI
41 Hicks, K.M., Onambele, G.L., Winwood, K. and Morse, C.I. (2016) Muscle damage following maximal eccentric knee extensions in males and females. PLoS ONE, 11, e0150848.   DOI
42 Newham, D.J., Jones, D.A. and Edwards, R.H. (1983) Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve, 6, 380-385.   DOI
43 Vissing, K., Overgaard, K., Nedergaard, A., Fredsted, A. and Schjerling, P. (2008) Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle. Eur. J. Appl. Physiol., 103, 323-332.   DOI
44 Penailillo, L., Blazevich, A., Numazawa, H. and Nosaka, K. (2015) Rate of force development as a measure of muscle damage. Scand. J. Med. Sci. Sports, 25, 417-427.   DOI
45 Wilson, J.M., Kim, J.S., Lee, S.R., Rathmacher, J.A., Dalmau, B., Kingsley, J.D., Koch, H., Manninen, A.H., Saadat, R. and Panton, L.B. (2009) Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr. Metab. (Lond), 6, 6.   DOI
46 Baroni, B.M., Leal Junior, E.C., De Marchi, T., Lopes, A.L., Salvador, M. and Vaz, M.A. (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur. J. Appl. Physiol., 110, 789-796.   DOI
47 Selkow, N.M., Herman, D.C., Liu, Z., Hertel, J., Hart, J.M. and Saliba, S.A. (2015) Blood flow after exercise-induced muscle damage. J. Athl. Train, 50, 400-406.   DOI
48 Twist, C. and Eston, R.G. (2009) The effect of exercise-induced muscle damage on perceived exertion and cycling endurance performance. Eur. J. Appl. Physiol., 105, 559-567.   DOI
49 Chen, T.C., Lin, K.Y., Chen, H.L., Lin, M.J. and Nosaka, K. (2011) Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur. J. Appl. Physiol., 111, 211-223.   DOI
50 Clarkson, P.M. and Hubal, M.J. (2002) Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil., 81, S52-S69.   DOI
51 Rinard, J., Clarkson, P.M., Smith, L.L. and Grossman, M. (2000) Response of males and females to high-force eccentric exercise. J. Sports Sci., 18, 229-236.   DOI
52 Vigelso, A., Andersen, N.B. and Dela, F. (2014) The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol., 6, 84-101.
53 Ruoppolo, M., Scolamiero, E., Caterino, M., Mirisola, V., Franconi, F. and Campesi, I. (2015) Female and male human babies have distinct blood metabolomic patterns. Mol. Biosyst., 11, 2483-2492.   DOI
54 Tso, V.K., Sydora, B.C., Foshaug, R.R., Churchill, T.A., Doyle, J., Slupsky, C.M. and Fedorak, R.N. (2013) Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS ONE, 8, e67654.   DOI
55 Woledge, R.C., Curtin, N.A. and Homsher, E. (1985) Energetic aspects of muscle contraction. Monogr. Physiol. Soc., 41, 1-357.
56 Bigland-Ritchie, B. and Woods, J.J. (1974) Integrated EMG and oxygen uptake during dynamic contractions of human muscles. J. Appl. Physiol., 36, 475-479.   DOI
57 McCully, K.K. and Faulkner, J.A. (1986) Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. J. Appl. Physiol., 61, 293-299.   DOI
58 Dieli-Conwright, C.M., Spektor, T.M., Rice, J.C., Sattler, F.R. and Schroeder, E.T. (2009) Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J. Appl. Physiol., 107, 853-858.   DOI
59 Saks, V. (2008) The phosphocreatine-creatine kinase system helps to shape muscle cells and keep them healthy and alive. J. Physiol., 586, 2817-2818.   DOI
60 Koopman, R., Ly, C.H. and Ryall, J.G. (2014) A metabolic link to skeletal muscle wasting and regeneration. Front Physiol., 5, 32.
61 Powers, S.K. and Jackson, M.J. (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev., 88, 1243-1276.   DOI