Browse > Article
http://dx.doi.org/10.5851/kosfa.2022.e37

Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review  

Harlina, Putri Widyanti (Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran)
Maritha, Vevi (Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran)
Musfiroh, Ida (Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran)
Huda, Syamsul (Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran)
Sukri, Nandi (Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran)
Muchtaridi, Muchtaridi (Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran)
Publication Information
Food Science of Animal Resources / v.42, no.5, 2022 , pp. 744-761 More about this Journal
Abstract
The liquid chromatography mass spectrometry (LC-MS)-based metabolomic and lipidomic methodology has great sensitivity and can describe the fingerprint of metabolites and lipids in pork and beef. This approach is commonly used to identify and characterize small molecules such as metabolites and lipids, in meat products with high accuracy. Since the metabolites and lipids can be used as markers for many properties of a food, they can provide further evidence of the foods authenticity claim. Chromatography coupled to mass spectrometry is used to separate lipids and metabolites from meat samples. The research data usually is compared to lipid and metabolite databases and evaluated using multivariate statistics. LC-MS instruments directly connected to the metabolite and lipid databases software can be used to assess the authenticity of meat products. LC-MS has good selectivity and sensitivity for metabolomic and lipidomic analysis. This review highlighted the combination of metabolomics and lipidomics can be used as a reference for analyzing authentication meat products.
Keywords
meat products; metabolomics; lipidomics; authentication; liquid chromatography mass spectrometry (LC-MS);
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Nakyinsige K, Man YBC, Sazili AQ. 2012. Halal authenticity issues in meat and meat products. Meat Sci 91:207-214.   DOI
2 Pavlidis DE, Mallouchos A, Ercolini D, Panagou EZ, Nychas GJE. 2019. A volatilomics approach for off-line discrimination of minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis. Meat Sci 151:43-53.   DOI
3 Qodri M. 2018. Pengharaman lemak hewani bagi bani israil sebagai hukuman (kajian surat al-an'am ayat 146 dalam perspektif sains modern). J Ilmiah Univ Batanghari Jambi 18:647.
4 Rohman A, Fadzillah NA. 2021. Application of spectroscopic and chromatographic methods for the analysis of non-halal meats in food products. In Multifaceted protocols in biotechnology. Amid A (ed). Springer, Cham, Switzerland. pp 75-92.
5 Sarah SA, Faradalila WN, Salwani MS, Amin I, Karsani SA, Sazili AQ. 2016. LC-QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination. Food Chem 199:157-164.   DOI
6 Stachniuk A, Sumara A, Montowska M, Fornal E. 2019. Liquid chromatography-mass spectrometry bottom-up proteomic methods in animal species analysis of processed meat for food authentication and the detection of adulterations. Mass Spectrom Rev 40:3-30.   DOI
7 Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. 2012. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform 7:96-108.   DOI
8 Troy DJ, Tiwari BK, Joo ST. 2016. Health implications of beef intramuscular fat consumption. Korean J Food Sci Anim Resour 36:577-582.   DOI
9 Utpott M, Rodrigues E, Rios AO, Mercali GD, Flores SH. 2022. Metabolomics: An analytical technique for food processing evaluation. Food Chem 366:130685.
10 Islam KZ, Ahasan MAA, Hossain MS, Rahman MH, Mousumi US, Asaduzzaman M. 2021. A smart fluorescent light spectroscope to identify the pork adulteration for halal authentication. Food Nutr Sci 12:73-89.
11 Jalil NSA, Tawde AV, Zito S, Sinclair M, Fryer C, Idrus Z, Phillips CJC. 2018. Attitudes of the public towards halal food and associated animal welfare issues in two countries with predominantly Muslim and non-Muslim populations. PLOS ONE 13:e0204094.
12 Jang C, Hui S, Zeng X, Cowan AJ, Wang L, Chen L, Morscher RJ, Reyes J, Frezza C, Hwang HY, Imai A, Saito Y, Okamoto K, Vaspoli C, Kasprenski L, Zsido GA 2nd, Gorman JH 3rd, Gorman RC, Rabinowitz JD. 2019. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab 30:594-606.   DOI
13 Jannat B, Ghorbani K, Shafieyan H, Kouchaki S, Behfar A, Sadeghi N, Beyramysoltan S, Rabbani F, Dashtifard S, Sadeghi M. 2018. Gelatin speciation using real-time PCR and analysis of mass spectrometry-based proteomics datasets. Food Control 87:79-87.   DOI
14 Jia W, Fan Z, Shi Q, Zhang R, Wang X, Shi L. 2021. LC-MS-based metabolomics reveals metabolite dynamic changes during irradiation of goat meat. Food Res Int 150:110721.
15 Kang C, Zhang Y, Zhang M, Qi J, Zhao W, Gu J, Guo W, Li Y. 2022. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA. Food Chem 387:132932.
16 Kliman M, May JC, McLean JA. 2011. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:935-945.   DOI
17 Li J, Vosegaard T, Guo Z. 2017. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog Lipid Res 68:37-56.   DOI
18 Lim SA, Ahmed MU. 2016. A label free electrochemical immunosensor for sensitive detection of porcine serum albumin as a marker for pork adulteration in raw meat. Food Chem 206:197-203.   DOI
19 Lee JY, Park JH, Mun H, Shim WB, Lim SH, Kim MG. 2018. Quantitative analysis of lard in animal fat mixture using visible raman spectroscopy. Food Chem 254:109-114.   DOI
20 Trivedi DK, Hollywood KA, Rattray NJW, Ward H, Trivedi DK, Greenwood J, Ellis DI, Goodacre R. 2016. Meat, the metabolites: An integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst 141:2155-2164.   DOI
21 Vanany I, Soon JM, Maryani A, Wibawa BM. 2020. Determinants of halal-food consumption in Indonesia. J Islam Mark 11:507-521.   DOI
22 von Bargen C, Brockmeyer J, Humpf HU. 2014. Meat authentication: A new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. J Agric Food Chem 62:9428-9435.   DOI
23 Wang J, Xu Z, Zhang H, Wang Y, Liu X, Wang Q, Xue J, Zhao Y, Yang S. 2021a. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci 173:108374.
24 Yang Y, Pan D, Sun Y, Wang Y, Xu F, Cao J. 2019. 1H NMR-based metabolomics profiling and taste of stewed pork-hock in soy sauce. Food Res Int 121:658-665.   DOI
25 Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. 2019. NMR spectroscopy for metabolomics research. Metabolites 9:123.
26 Lim YH, Lada S, Ullah R, Abdul Adis AA. 2022. Non-Muslim consumers' intention to purchase halal food products in Malaysia. J Islam Mark 13:586-607.   DOI
27 Mahbubi A, Uchiyama T, Hatanaka K. 2019. Capturing consumer value and clustering customer preferences in the Indonesian halal beef market. Meat Sci 156:23-32.   DOI
28 Medema MH, Fischbach MA. 2015. Computational approaches to natural product discovery. Nat Chem Biol 11:639-648.   DOI
29 Montowska M, Fornal E. 2017. Label-free quantification of meat proteins for evaluation of species composition of processed meat products. Food Chem 237:1092-1100.   DOI
30 Moosmang S, Pitscheider M, Sturm S, Seger C, Tilg H, Halabalaki M, Stuppner H. 2019. Metabolomic analysis: Addressing NMR and LC-MS related problems in human feces sample preparation. Clin Chim Acta 489:169-176.   DOI
31 Munekata PES, Pateiro M, Lopez-Pedrouso M, Gagaoua M, Lorenzo JM. 2021. Foodomics in meat quality. Curr Opin Food Sci 38:79-85.   DOI
32 Muroya S, Ueda S, Komatsu T, Miyakawa T, Ertbjerg P. 2020. MEATabolomics: Muscle and meat metabolomics in domestic animals. Metabolites 10:188.
33 Narvaez-Rivas M, Zhang Q. 2016. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A 1440:123-134.   DOI
34 Neef SK, Winter S, Hofmann U, Murdter TE, Schaeffeler E, Horn H, Buck A, Walch A, Hennenlotter J, Ott G, Fend F, Bedke J, Schwab M, Haag M. 2020. Optimized protocol for metabolomic and lipidomic profiling in formalin-fixed paraffin-embedded kidney tissue by LC-MS. Anal Chim Acta 1134:125-135.   DOI
35 Yuswan MH, Aizat WM, Lokman AA, Desa MNM, Mustafa S, Junoh NM, Yusof ZNB, Mohamed R, Mohmad Z, Lamasudin DU. 2018. Chemometrics-assisted shotgun proteomics for establishment of potential peptide markers of non-halal pork (Sus scrofa) among halal beef and chicken. Food Anal Methods 11:3505-3515.   DOI
36 Pico Y. 2015. Mass spectrometry in food quality and safety: An overview of the current status. Compr Anal Chem 68:3-76.   DOI
37 Pranata AW, Yuliana ND, Amalia L, Darmawan N. 2021. Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction-gas chromatography-mass spectrometry. Arab J Chem 14:103146.
38 Rocchetti G, Bernardo L, Pateiro M, Barba FJ, Munekata PES, Trevisan M, Lorenzo JM. 2020. Impact of a pitanga leaf extract to prevent lipid oxidation processes during shelf life of packaged pork burgers: An untargeted metabolomic approach. Foods 9:1668.
39 Rohman A, Che Man YB. 2011. Analysis of pig derivatives for halal authentication studies. Food Rev Int 28:97-112.   DOI
40 Rohman A, Windarsih A, Erwanto Y, Zakaria Z. 2020. Review on analytical methods for analysis of porcine gelatine in food and pharmaceutical products for halal authentication. Trends Food Sci Technol 101:122-132.   DOI
41 Salwani MS, Adeyemi KD, Sarah SA, Vejayan J, Zulkifli I, Sazili AQ. 2015. Skeletal muscle proteome and meat quality of broiler chickens subjected to gas stunning prior slaughter or slaughtered without stunning. CyTA J Food 14:375-381.
42 Ahmad AN, Ungku Zainal Abidin UF, Othman M, Abdul Rahman R. 2018. Overview of the halal food control system in Malaysia. Food Control 90:352-363.   DOI
43 Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A. 2011. Multistage mass spectrometry in quality, safety and origin of foods. Eur J Mass Spectrom 17:1-31.   DOI
44 Ali NSM, Zabidi AR, Manap MNA, Zahari SMSNS, Yahaya N. 2020a. Effect of different slaughtering methods on metabolites of broiler chickens using ultra high-performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS). Food Res 4:133-138.   DOI
45 Sin KY, Sin MC. 2019. Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system. Cogent Eng 6:1599149.
46 Ali NSM, Zabidi AR, Manap MNA, Zahari SMSNS, Yahaya N. 2020b. Identification of metabolite profile in halal and non-halal broiler chickens using Fourier-transform infrared spectroscopy (FTIR) and ultra high performance liquid chromatography-time of flight- mass spectrometry (UHPLC-TOF-MS). Malays Appl Biol 49:87-93.
47 Amaral JS, Santos G, Oliveira MBPP, Mafra I. 2017. Quantitative detection of pork meat by EvaGreen real-time PCR to assess the authenticity of processed meat products. Food Control 72:53-61.   DOI
48 Abbas O, Zadravec M, Baeten V, Mikus T, Lesic T, Vulic A, Prpic J, Jemersic L, Pleadin J. 2018. Analytical methods used for the authentication of food of animal origin. Food Chem 246:6-17.   DOI
49 Ali M, Lee SY, Park JY, Jung S, Jo C, Nam KC. 2019. Comparison of functional compounds and micronutrients of chicken breast meat by breeds. Food Sci Anim Resour 39:632-642.   DOI
50 Alzeer J, Rieder U, Hadeed KA. 2018. Rational and practical aspects of halal and tayyib in the context of food safety. Trends Food Sci Technol 71:264-267.   DOI
51 Arish M, Husein A, Kashif M, Sandhu P, Hasnain SE, Akhter Y, Rub A. 2015. Orchestration of membrane receptor signaling by membrane lipids. Biochimie 113:111-124.   DOI
52 Ballin NZ. 2010. Authentication of meat and meat products. Meat Sci 86:577-587.   DOI
53 Capozzi F, Trimigno A, Ferranti P. 2017. Proteomics and metabolomics in relation to meat quality. In Poultry quality evaluation: Quality attributes and consumer values. Petracci M, Berri C (ed). Woodhead, Sawston, UK. pp 221-245.
54 Chin ST, Che Man YB, Tan CP, Hashim DM. 2009. Rapid profiling of animal-derived fatty acids using fast GC × GC coupled to time-of-flight mass spectrometry. J Am Oil Chem Soc 86:949-958.   DOI
55 Consonni R, Cagliani LR. 2019. The potentiality of NMR-based metabolomics in food science and food authentication assessment. Magn Reson Chem 57:558-578.   DOI
56 Dailey AL. 2017. Metabolomic bioinformatic analysis. In Molecular profiling: Methods and protocols. Espina V (ed). Springer, New York, NY, USA.
57 D'Alessandro A, Zolla L. 2013. Foodomics to investigate meat tenderness. TrAC Trends Anal Chem 52:47-53.   DOI
58 De Paepe E, Van Meulebroek L, Rombouts C, Huysman S, Verplanken K, Lapauw B, Wauters J, Hemeryck LY, Vanhaecke L. 2018. A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquid-chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal Chim Acta 1033:108-118.   DOI
59 Dettmer K, Aronov PA, Hammock BD. 2007. Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51-78.   DOI
60 Dominguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. 2019. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8:429.
61 El Sheikha AF, Mokhtar NFK, Amie C, Lamasudin DU, Isa NM, Mustafa S. 2017. Authentication technologies using DNA-based approaches for meats and halal meats determination. Food Biotechnol 31:281-315.   DOI
62 Erban A, Fehrle I, Martinez-Seidel F, Brigante F, Mas AL, Baroni V, Wunderlin D, Kopka J. 2019. Discovery of food identity markers by metabolomics and machine learning technology. Sci Rep 9:1-19.   DOI
63 Gorrochategui E, Jaumot J, Lacorte S, Tauler R. 2016. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal Chem 82:425-442.   DOI
64 Haleem A, Khan MI, Khan S. 2021. Conceptualising a framework linking halal supply chain management with sustainability: An India centric study. J Islam Mark 12:1535-1552.   DOI
65 Harlina PW, Ma M, Shahzad R. 2021. Quantification of lipidomics profiling using UPLC-QE-HESI-lipid analysis on the salted duck egg incorporated with clove extract. Eur J Lipid Sci Technol 123:2000284.
66 Heidari M, Talebpour Z, Abdollahpour Z, Adib N, Ghanavi Z, Aboul-Enein HY. 2020. Discrimination between vegetable oil and animal fat by a metabolomics approach using gas chromatography-mass spectrometry combined with chemometrics. J Food Sci Technol 57:3415-3425.   DOI
67 Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. 2020. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit Rev Food Sci Nutr 62:285-310.
68 Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, Fatchiyah F, Abdull Razis AF. 2021. Omics-based analytical approaches for assessing chicken species and breeds in food authentication. Molecules 26:6502.
69 Ellis DI, Muhamadali H, Allen DP, Elliott CT, Goodacre R. 2016. A flavour of omics approaches for the detection of food fraud. Curr Opinion Food Sci 10:7-15.   DOI
70 Fadzillah NA, Rohman A, Salleh RA, Amin I, Shuhaimi M, Farahwahida MY, Rashidi O, Aizat JM, Khatib A. 2017. Authentication of butter from lard adulteration using high-resolution of nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Int J Food Prop 20:2147-2156.   DOI
71 Han X, Gross RW. 2005. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367-412.   DOI
72 Artegoitia VM, Foote AP, Lewis RM, Freetly HC. 2019. Metabolomics profile and targeted lipidomics in multiple tissues associated with feed efficiency in beef steers. ACS Omega 4:3973-3982.   DOI
73 Castro-Puyana M, Perez-Miguez R, Montero L, Herrero M. 2017. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC Trends Anal Chem 96:62-78.   DOI
74 Crestani E, Harb H, Charbonnier LM, Leirer J, Motsinger-Reif A, Rachid R, Phipatanakul W, Kaddurah-Daouk R, Chatila TA. 2020. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J Allergy Clin Immunol 145:897-906.   DOI
75 Demirhan Y, Ulca P, Senyuva HZ. 2012. Detection of porcine DNA in gelatine and gelatine-containing processed food products: Halal/Kosher authentication. Meat Sci 90:686-689.   DOI
76 Holcapek M, Liebisch G, Ekroos K. 2018. Lipidomic analysis. Anal Chem 90:4249-4257.   DOI
77 Izadpanah M, Mohebali N, Elyasi Gorji Z, Farzaneh P, Vakhshiteh F, Shahzadeh Fazeli SA. 2017. Simple and fast multiplex PCR method for detection of species origin in meat products. J Food Sci Technol 55:698-703.   DOI
78 Jannat B, Ghorbani K, Kouchaki S, Sadeghi N, Eslamifarsani E, Rabbani F, Beyramysoltan S. 2020. Distinguishing tissue origin of bovine gelatin in processed products using LC/MS technique in combination with chemometrics tools. Food Chem 319:126302.
79 Junot C, Fenaille F, Colsch B, Becher F. 2014. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev 33:471-500.   DOI
80 Korf A, Jeck V, Schmid R, Helmer PO, Hayen H. 2019. Lipid species annotation at double bond position level with custom databases by extension of the mzmine 2 open-source software package. Anal Chem 91:5098-5105.   DOI
81 Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. 2020. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 19:2256-2296.   DOI
82 Wang J, Xu L, Xu Z, Wang Y, Niu C, Yang S. 2020. Liquid chromatography quadrupole time-of-flight mass spectrometry and rapid evaporative ionization mass spectrometry were used to develop a lamb authentication method: A preliminary study. Foods 9:1723.
83 Wang K, Xu L, Wang X, Chen A, Xu Z. 2021b. Discrimination of beef from different origins based on lipidomics: A comparison study of DART-QTOF and LC-ESI-QTOF. LWT-Food Sci Technol 149:111838.
84 Wu B, Wei F, Xu S, Xie Y, Lv X, Chen H, Huang F. 2021. Mass spectrometry-based lipidomics as a powerful platform in foodomics research. Trends Food Sci Technol 107:358-376.   DOI
85 Yu Z, Wang N, Geng F, Ma M. 2020. High-density lipoproteins from egg yolk's effect on hyperlipidemia in a high-fat-diet obese mouse using lipidomic analysis. Food Biosci 33:100492.
86 Yuliana ND, Hunaefi D, Goto M, Ishikawa YT, Verpoorte R. 2022. Measuring the health effects of food by metabolomics. Crit Rev Food Sci Nutr 62:6359-6373.   DOI
87 Zamaratskaia G, Li S. 2017. Proteomics in meat science: Current status and future perspective. Theory Pract Meat Process 2:18-26.   DOI
88 Zhang M, Li Y, Zhang Y, Kang C, Zhao W, Ren N, Guo W, Wang S. 2022. Rapid LC-MS/MS method for the detection of seven animal species in meat products. Food Chem 371:131075.
89 Mi S, Shang K, Li X, Zhang CH, Liu JQ, Huang DQ. 2019. Characterization and discrimination of selected China's domestic pork using an LC-MS-based lipidomics approach. Food Control 100:305-314.   DOI
90 Mostafa MM. 2020. Information diffusion in halal food social media: A social network approach. J Int Consum Mark 33:471-491.   DOI
91 Lubis HN, Mohd-Naim NF, Alizul NN, Ahmed MU. 2016. From market to food plate: Current trusted technology and innovations in halal food analysis. Trends Food Sci Technol 58:55-68.   DOI
92 Zhang T, Chen C, Xie K, Wang J, Pan Z. 2021. Current state of metabolomics research in meat quality analysis and authentication. Foods 10:2388.   DOI