• 제목/요약/키워드: Metabolic responses

Search Result 246, Processing Time 0.028 seconds

Changes in Cellular Viability and Peroxidase Activities of Green Algae Selenastrum capricornutum (Chlorophyceae) to Cadmium (카드뮴에 대한 녹조류 Selenastrum capricornutum (Chlorophyceae)의 세포활력도 및 peroxidase 활성도 변화)

  • Choi Eun-Joo;Lee Sang-Goo;Lee Seung-Jin;Moon Sung-Kyung;Park Yong-Seok;Rhie Ki-tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.295-303
    • /
    • 2003
  • Physiological cellular activities responses to cadmium (Cd) exposure in green algae with several reductases activities and viability of the cell were examined. The cell division of green algae, Selenastrum capricornutum treated with 5ppm was significantly decreased than that of normal algae. The mean cell number of normal algal culture was as twice much as than that of algae at 6 days after Cd treatment. The cellular viability of algae was analysed by flow-cytometry with fluorescent dye after esterase reaction on cell membrane. The 85.35% of cellular viability of normal culture was decreased to 34.35% when algae was treated with 5 ppm of Cd at 6 days after treatment. It was considered that those method of flow-cytometry is useful tool for toxicity test on micro-organisms in the respect of identifying cellular viability. Also, the activities of both glutathione peroxidase (GPX) and ascorbate peroxidase (APX), which are indirectly react against oxidative stress through reduction of glutathione by Cd were significantly increased with 25%. It is considered that both GPX and APX are involved in the metabolic pathway of Cd -detoxification with similar portion in Selenasturm capricornutum.

Effects of Toluene Inhalation on The Concentrations of The Brain Monoamines and Metabolites (톨루엔 흡입이 뇌중 Monoamine 및 그대사물의 농도에 미치는 영향에 관한 연구)

  • 김대병;이종권;정경자;윤여표
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.495-500
    • /
    • 1998
  • The effect of acute toluene exposure on behaviour and monoamine concentrations in the various brain regions were investigated in the rat. Toluene was adminstered via inhalation to rats at concentrations of 0, 1000, 10000, 40000 ppm for 20 min. During exposure to toluene, spontaneous locomotor activity was counted. After exposure, animals were sacrificed instantly and brains were separated. Regional concentratons of brain monoamines (norepinephrine, NE; dopamine, DA; 5- hydroxytryptamine, 5-HT) and its metabolites (3,4-dihydroxyphenylacetic acid, DOPAC; homovanillic acid, HVA; 5-hydroxyindole-3-acetic acid, 5-HIAA) were determined. The changes in locomotor activity during toluene exposure depended on the toluene concentration. At 1000 ppm concentration, spontaneous locomotor activity increased initially and thereafter decreased. At higher concentrations (10000 ppm and 40000 ppm), spontaneous locomotor activity decreased and eventually ceased. A regional analysis of VA, NE, 5-HT, VOPAC, HVA, and 5-HIAA indicated a significant decrease in VA concentrations in cerebellum and striatum while NE and 5-HT concentrations were significantly increased in the cerebellum and cortex. 5-HIAA concentrations were significantly increased in all brain regions. DOPAC concentrations were significantly increased in cerebellum and cortex while decreased in striatum. These results especially indicated that metabolic conversion of DA to HVA in striatum was highly increased by toluene inhalation. However, It remains to elucidate between behavioural responses and monoamine changes.

  • PDF

Effect of Caffeine Administration on Energy Substrate Change During Submaximal Exercise (최대하 운동부하시 Caffeine의 투여가 운동선수의 혈중 Energy Substrate 변화에 미치는 영향)

  • 조홍관
    • Journal of Nutrition and Health
    • /
    • v.27 no.2
    • /
    • pp.162-171
    • /
    • 1994
  • The purpose of this study was to describe the effects of caffeine ingestion on the metabolic responses during submaximal exercise. Ten male of rowing player aged 18-22yrs. participated in the study. No subjects had any remarkable medical history and none were taking medications. According to the administration of dehydrated caffeine(CA) (6mg/kg) or placebo(PA), they were classified into two groups such as caffeine group and placebo group. A randomized, double-blind, crossover protocol was employed using either CA or PA. Subjects underwent a submaximal bicycle ergometer. Blood was drawn intravenously prior to 60 min., at rest, at 30, and 45 min. of exercise, and recovery period. Plasma concentrations of glucose, free fatty acid and lactate were obtained using enzymatic method. Followings were obtained by the tests and analyses; 1) Blood glucose(BG) of 45 minute of exercise was significantly decreased in CA group of 76.3$\pm$14.8 mg/100ml compared with PA group of 94.9$\pm$11.2 mg/100mg(p<0.5). 2) Free fatty acid(FFA) of 30minute of exercise was significantly increased in CA group of 720$\pm$80 $\mu$Eq/1 compared with PA group of 360$\pm$120 $\mu$Eq/1(p<0.5). After exercise, FFA was significantly higher in CA group than those in PA group(p<0.1). 3) Blood lactate(BL) was not significantly different between the two. After exercise, BL was significantly different in 30 minute(p<05).

  • PDF

Draft genome sequence of Caballeronia sordidicola strain PAMC 26633 isolated from an antarctic lichen, Psoroma species (남극 지의류 Psoroma 종에서 분리한 Caballeronia sordidicola 균주 PAMC 26633의 초벌 유전체 서열 분석)

  • Kim, Junghee;Hong, Soon Gyu;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.337-339
    • /
    • 2017
  • Here we report the draft genome sequence of the Caballeronia sordidicola strain PAMC 26633, isolated from Psoroma species, a lichen material from Barton Peninsula, King George Island in Antarctica. As we have observed in previous genomic studies in the genus Caballeronia from polar lichen, draft genomic sequences of PAMC 26633 had an assortment of genes of ecological importance and of biotechnical potentials, which include diverse metabolic genes for carbohydrates, amino acids, and genes for nitrogen/sulfur metabolisms, stress responses, membrane transporters, antibiotic resistance, and heavy metal resistance. CRISPR genes and sequences were not found and there were some phage remnants and transposons.

Physiological Responses of the Chicken Grunt Parapristipoma trilineatum to High Water Temperature Stress (사육수의 고수온 스트레스가 벤자리(Parapristipoma trilineatum)에 미치는 생리학적 영향)

  • Kim, Ki-Hyuk;Hong, Sung-Won;Moon, Hye-Na;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.6
    • /
    • pp.714-719
    • /
    • 2018
  • We investigated the effects of water temperature on physiological parameters in the chicken grunt Parapristipoma trilineatum. At high temperature, the aspartate aminotransferase (AST) and the alanine aminotransferase (ALT) levels were increased, suggesting that high temperature induced hepatic damage. In addition, total protein (TP) was high at high water temperatures, which were considered stressful in the breeding environment. At high water temperatures, triglycerides (TG) were low due to increased metabolic activity, which decreased the blood TG levels as TG were used as an energy source. There was no significant difference in the plasma osmolality or the blood ion concentrations with water temperature. In generally, lysozyme, a factor in innate immunity, increased with water temperature. However, lysozyme activity tended to decrease with increasing water temperature, but the difference was not significant. These results suggested that the decrease of biophylaxis at high temperature was affect the growth or survival of the population.

Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways

  • Zhong, Xiaohui;Zhang, Feng;Yin, Xinyao;Cao, Hong;Wang, Xuesong;Liu, Dongsong;Chen, Jing;Chen, Xue
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.765-774
    • /
    • 2021
  • Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.

Latilactobacillus sakei WIKIM31 Decelerates Weight Gain in High-Fat Diet-Induced Obese Mice by Modulating Lipid Metabolism and Suppressing Inflammation

  • Park, Sung-Soo;Lim, Seul Ki;Lee, Jieun;Park, Hyo Kyeong;Kwon, Min-Sung;Yun, Misun;Kim, Namhee;Oh, Young Joon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1568-1575
    • /
    • 2021
  • Obesity and related metabolic diseases are major problems worldwide. Some probiotics are currently considered potential therapeutic strategies for obesity. We aimed to investigate the anti-obesity efficacy of Latilactobacillus sakei WIKIM31 in obese mice induced by a high fat diet. The administration of a high-fat diet with L. sakei WIKIM31 reduced body weight gain, epididymal fat mass, triglyceride and total cholesterol levels in the blood, and remarkably decreased the expression of lipogenesis-related genes in the epididymal adipose tissue and liver. Interestingly, intake of L. sakei WIKIM31 improved gut barrier function by increasing the gene expression of tight junction proteins and suppressing the inflammatory responses. Additionally, L. sakei WIKIM31 enhanced the production of short-chain fatty acids, such as butyrate and propionate, in the intestinal tract. These results showed that L. sakei WIKIM31 can be used as a potential therapeutic probiotic for obesity.

Precision nutrition: approach for understanding intra-individual biological variation (정밀영양: 개인 간 대사 다양성을 이해하기 위한 접근)

  • Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In the past few decades, great progress has been made on understanding the interaction between nutrition and health status. But despite this wealth of knowledge, health problems related to nutrition continue to increase. This leads us to postulate that the continuing trend may result from a lack of consideration for intra-individual biological variation on dietary responses. Precision nutrition utilizes personal information such as age, gender, lifestyle, diet intake, environmental exposure, genetic variants, microbiome, and epigenetics to provide better dietary advices and interventions. Recent technological advances in the artificial intelligence, big data analytics, cloud computing, and machine learning, have made it possible to process data on a scale and in ways that were previously impossible. A big data platform is built by collecting numerous parameters such as meal features, medical metadata, lifestyle variation, genome diversity and microbiome composition. Sophisticated techniques based on machine learning algorithm can be used to integrate and interpret multiple factors and provide dietary guidance at a personalized or stratified level. The development of a suitable machine learning algorithm would make it possible to suggest a personalized diet or functional food based on analysis of intra-individual metabolic variation. This novel precision nutrition might become one of the most exciting and promising approaches of improving health conditions, especially in the context of non-communicable disease prevention.

Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities

  • Eun-Ji Song;Ji-Hee Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1497-1505
    • /
    • 2022
  • Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.

Micronutrients as Supportive Care for Gastrointestinal Cancer Patients; Benefits and Concerns

  • Yoo-Sun Kim;Yuri Kim
    • Journal of Digestive Cancer Research
    • /
    • v.1 no.2
    • /
    • pp.82-88
    • /
    • 2013
  • Cancer is the first leading cause of death in Korea and the second leading cause of death in the USA. There is extensive research into prevention of cancer and the support of oncology patients with diet or dietary supplements. In vitro and in vivo animal studies have indicated that antioxidants, including beta-carotene, alpha-tocopherol, and ascorbic acid, can yield anti-cancer effects in addition to providing protection against oxidative damage. Although many observational studies have shown that consuming fruits and vegetables can reduce the risk of some cancers, the results of several large-scale human intervention trials testing the benefits of a single or combined higher-dose of individual micronutrients have been inconsistent. Cancer can cause profound metabolic and physiological changes which may affect patients' nutrient requirements. Although the optimal route of nutrient delivery is through diet, cancer patients often suffer symptoms that disrupt their food intake, including anorexia, premature satiety, altered taste and smell, and changes in bowel mobility. In particular, micronutrient deficits can slow postoperative healing, contribute to depression symptoms, and decrease immune competence. Cancer patients are generally motivated to take dietary supplements to improve responses to treatment and quality of life. The Physician's Health Study II (PHS II) randomized controlled trial reported recently that daily multivitamin supplementation significantly, albeit modestly, reduced the risk of total cancer. Although evidence of multivitamin use benefits is limited in cancer patients, taking dietary supplements with constituents in the range of the recommended daily allowance according to the Dietary Reference Intake (DRI) recommendation is generally considered to be safe.

  • PDF