Browse > Article
http://dx.doi.org/10.4014/jmb.2209.09050

Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities  

Eun-Ji Song (Research Group of Personalized Diet, Korea Food Research Institute)
Ji-Hee Shin (Research Group of Personalized Diet, Korea Food Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.12, 2022 , pp. 1497-1505 More about this Journal
Abstract
Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.
Keywords
Diet; personalized nutrition; gut microbiota; enterotype; human health;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. 2017. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol. Nutr. Food Res. 61: 1600324.
2 Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M, et al. 2017. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 25: 1243-1253. e1245.   DOI
3 Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. 2011. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140: 976-986.   DOI
4 Kolida S, Meyer D, Gibson G. 2007. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur. J. Clin. Nutr. 61: 1189-1195.   DOI
5 Bennet SM, Bohn L, Storsrud S, Liljebo T, Collin L, Lindfors P, et al. 2018. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 67: 872-881.   DOI
6 Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR, Luna RA, et al. 2015. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment. Pharmacol. Ther. 42: 418-427.   DOI
7 Kong LC, Wuillemin P-H, Bastard J-P, Sokolovska N, Gougis S, Fellahi S, et al. 2013. Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. Am. J. Clin. Nutr. 98: 1385-1394.   DOI
8 Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65: 426-436.   DOI
9 Jie Z, Yu X, Liu Y, Sun L, Chen P, Ding Q, et al. 2021. The baseline gut microbiota directs dieting-induced weight loss trajectories. Gastroenterology 160: 2029-2042. e2016.   DOI
10 Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180.   DOI
11 Mobeen F, Sharma V, Tulika P. 2018. Enterotype variations of the healthy human gut microbiome in different geographical regions. Bioinformation 14: 560-573.   DOI
12 De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107: 14691-14696.   DOI
13 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.   DOI
14 Christensen L, Roager HM, Astrup A, Hjorth MF. 2018. Microbial enterotypes in personalized nutrition and obesity management. Am. J. Clin. Nutr. 108: 645-651.   DOI
15 Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, et al. 2018. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3: 8-16.
16 Lim MY, Rho M, Song Y-M, Lee K, Sung J, Ko G. 2014. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci. Rep. 4: 7348.
17 Li J, Fu R, Yang Y, Horz H-P, Guan Y, Lu Y, et al. 2018. A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Syst. Appl. Microbiol. 41: 1-12.   DOI
18 Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. 2017. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci. Rep. 7: 2594.
19 Wu Q, Pi Xe, Liu W, Chen H, Yin Y, Yu HD, et al. 2017. Fermentation properties of isomaltooligosaccharides are affected by human fecal enterotypes. Anaerobe 48: 206-214.   DOI
20 Fu T, Pan L, Shang Q, Yu G. 2021. Fermentation of alginate and its derivatives by different enterotypes of human gut microbiota: Towards personalized nutrition using enterotype-specific dietary fibers. Int. J. Biol. Macromol. 183: 1649-1659.   DOI
21 Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Garcia Yunta R, Okuda S, et al. 2016. Species-function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1: 16088.
22 Hjorth M, Roager HM, Larsen T, Poulsen S, Licht TR, Bahl MI, et al. 2018. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obesity 42: 580-583.   DOI
23 Hjorth MF, Blaedel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, et al. 2019. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int. J. Obesity 43: 149-157.   DOI
24 Christensen L, Vuholm S, Roager HM, Nielsen DS, Krych L, Kristensen M, et al. 2019. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J. Nutr. 149: 2174-2181.   DOI
25 Kang C, Zhang Y, Zhu X, Liu K, Wang X, Chen M, et al. 2016. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes. J. Clin. Endocrinol. Metab. 101: 4681-4689.   DOI
26 Zou H, Wang D, Ren H, Cai K, Chen P, Fang C, et al. 2020. Effect of caloric restriction on BMI, gut microbiota, and blood amino acid levels in non-obese adults. Nutrients 12: 631.
27 Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. 2014. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol. 80: 1142-1149.   DOI
28 Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22: 971-982.   DOI
29 Song EJ, Han K, Lim TJ, Lim S, Chung MJ, Nam MH, et al. 2020. Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial. EPMA J. 11: 31-51.   DOI
30 Jeffery IB, Claesson MJ, O'Toole PW, Shanahan F. 2012. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10: 591-592.   DOI
31 Cheng M, Ning K. 2019. Stereotypes about enterotype: the old and new ideas. Genomics Proteomics Bioinformatics 17: 4-12.   DOI
32 Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D, et al. 2014. Rethinking "enterotypes". Cell Host Microbe. 16: 433-437.   DOI
33 Spencer SP, Fragiadakis GK, Sonnenburg JL. 2019. Pursuing human-relevant gut microbiota-immune interactions. Immunity 51: 225-239.   DOI
34 Gibson PR. 2017. History of the low FODMAP diet. J. Gastroenterol. Hepatol. 32: 5-7.   DOI
35 Tomova A, Soltys K, Kemenyova P, Karhanek M, Babinska K. 2020. The influence of food intake specificity in children with autism on gut microbiota. Int. J. Mol. Sci. 21: 2797.
36 Vervier K, Moss S, Kumar N, Adoum A, Barne M, Browne H, et al. 2022. Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut 71: 1821-1830.   DOI
37 Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. 2018. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 145: 163-168.   DOI
38 Berding K, Donovan SM. 2018. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 12: 515.
39 Yap CX, Henders AK, Alvares GA, Wood DL, Krause L, Tyson GW, et al. 2021. Autism-related dietary preferences mediate autismgut microbiome associations. Cell 184: 5916-5931. e5917.   DOI
40 Tarca AL, Carey VJ, Chen X-w, Romero R, Draghici S. 2007. Machine learning and its applications to biology. PLoS Comput. Biol. 3: e116.
41 Ghaffari P, Shoaie S, Nielsen LK. 2022. Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions. J. Transl. Med. 20: 173.
42 Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214.   DOI
43 Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24.
44 Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13: 260-270.   DOI
45 Moschen AR, Wieser V, Tilg H. 2012. Dietary factors: major regulators of the gut's microbiota. Gut Liver 6: 411-416.   DOI
46 Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222-227.   DOI
47 Fierer N, Hamady M, Lauber CL, Knight R. 2008. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. USA 105: 17994-17999.   DOI
48 Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. New Eng. J. Med. 375: 2369-2379.   DOI
49 Vakili S, Caudill MA. 2007. Personalized nutrition: Nutritional genomics as a potential tool for targeted medical nutrition therapy. Nutr. Rev. 65: 301-315.   DOI
50 Santos JL, Boutin P, Verdich C, Holst C, Larsen LH, Toubro S, et al. 2006. Genotype-by-nutrient interactions assessed in European obese women. Eur. J. Nutr. 45: 454-462.   DOI
51 Horigan G, McNulty H, Ward M, Strain J, Purvis J, Scott JM. 2010. Riboflavin lowers blood pressure in cardiovascular disease patients homozygous for the 677C→ T polymorphism in MTHFR. J. Hypertens. 28: 478-486.   DOI
52 Wilson CP, Ward M, McNulty H, Strain J, Trouton TG, Horigan G, et al. 2012. Riboflavin offers a targeted strategy for managing hypertension in patients with the MTHFR 677TT genotype: a 4-y follow-up. Am. J. Clin. Nutr. 95: 766-772.   DOI
53 Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. 2019. Precision nutrition and the microbiome part II: potential opportunities and pathways to commercialisation. Nutrients 11: 1468.
54 Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163: 1079-1094.   DOI
55 Zmora N, Suez J, Elinav E. 2019. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16: 35-56.   DOI
56 Southgate D. n1998. How much and what classes of carbohydrate reach the colon. Eur. J. Cancer Prev. 7 Suppl 2: S81-82.
57 Stephen A, Haddad A, Phillips S. 1983. Passage of carbohydrate into the colon: direct measurements in humans. Gastroenterology 85: 589-595.   DOI
58 Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20: 779-786.   DOI
59 Danneskiold-Samsoe NB, Barros HDdFQ, Santos R, Bicas JL, Cazarin CBB, Madsen L, et al. 2019. Interplay between food and gut microbiota in health and disease. Food Res. Int. 115: 23-31.   DOI
60 Gentile CL, Weir TL. 2018. The gut microbiota at the intersection of diet and human health. Science 362: 776-780.   DOI
61 Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69: 52-60.   DOI
62 Ma N, Tian Y, Wu Y, Ma X. 2017. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Peptide Sci. 18: 795-808.
63 Delzenne NM, Knudsen C, Beaumont M, Rodriguez J, Neyrinck AM, Bindels LB. 2019. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis. Proc. Nutr. Soc. 78: 319-328.   DOI
64 Biesalski HK. 2016. Nutrition meets the microbiome: micronutrients and the microbiota. Annal. NY Acad. Sci. 1372: 53-64.   DOI
65 Hubbard TD, Murray IA, Bisson WH, Lahoti TS, Gowda K, Amin SG, et al. 2015. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5: 12689.
66 Portune KJ, Benitez-Paez A, Del Pulgar EMG, Cerrudo V, Sanz Y. 2017. Gut microbiota, diet, and obesity-related disorders-The good, the bad, and the future challenges. Mol. Nutr. Food Res. 61: 1600252.
67 Dawson PA. 2016. Bile acid metabolism. pp. 359-389. Biochem. Lipids, Lipoproteins and Membranes.
68 Gross G, Jacobs DM, Peters S, Possemiers S, van Duynhoven J, Vaughan EE, et al. 2010. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J. Agric. Food Chem. 58: 10236-10246.   DOI
69 Kemperman RA, Bolca S, Roger LC, Vaughan EE. 2010. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology 156: 3224-3231.   DOI
70 Li Q, Van de Wiele T. 2021. Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Crit. Rev. Food Sci.Nutr. 13: 1-27.
71 Liu C, Vervoort J, van den Elzen J, Beekmann K, Baccaro M, de Haan L, et al. 2021. Interindividual differences in human in vitro intestinal microbial conversion of green tea (-)-epigallocatechin-3-O-gallate and consequences for activation of Nrf2 mediated gene expression. Mol. Nutr. Food Res. 65: 2000934.
72 Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, et al. 2020. Interindividual differences in human intestinal microbial conversion of (-)-epicatechin to bioactive phenolic compounds. J. Agric. Food Chem. 68: 14168-14181.   DOI
73 Yamakoshi J, Tokutake S, Kikuchi M, Kubota Y, Konishi H, Mitsuoka T. 2001. Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor. Microb.Ecol. Health Dis. 13: 25-31.
74 Cardona F, Andres-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuno MI. 2013. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24: 1415-1422.   DOI
75 De Filippis F, Vitaglione P, Cuomo R, Berni Canani R, Ercolini D. 2018. Dietary interventions to modulate the gut microbiome-how far away are we from precision medicine. Inflamm. Bowel Dis. 24: 2142-2154.   DOI
76 Tanaka M, Nakayama J. 2017. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66: 515-522.   DOI
77 Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. New Eng. J. Med. 375: 2369-2379.   DOI
78 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563.   DOI
79 Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555: 210-215.   DOI
80 Heiman ML, Greenway FL. 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5: 317-320.   DOI
81 Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8: 2218-2230.   DOI
82 Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. 2015. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17: 4954-4964.   DOI
83 Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. 2017. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15: 630-638.   DOI
84 Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500: 585-588.   DOI
85 Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M, Campoy C, et al. 2009. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17: 1906-1915.   DOI