Browse > Article
http://dx.doi.org/10.4014/jmb.2104.04016

Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways  

Zhong, Xiaohui (Wuxi School of Medicine, Jiangnan University)
Zhang, Feng (Wuxi School of Medicine, Jiangnan University)
Yin, Xinyao (Wuxi School of Medicine, Jiangnan University)
Cao, Hong (Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University)
Wang, Xuesong (Wuxi School of Medicine, Jiangnan University)
Liu, Dongsong (Department of Orthopedics, Affiliated Hospital of Jiangnan University)
Chen, Jing (Department of Orthopedics, Affiliated Hospital of Jiangnan University)
Chen, Xue (Wuxi School of Medicine, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.6, 2021 , pp. 765-774 More about this Journal
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Keywords
Bone homeostasis; gut microbiota; signaling pathway; bone metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Whisner C, Martin B, Nakatsu C, Story J, MacDonald-Clarke C, McCabe L, et al. 2016. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. 146: 1298-1306.   DOI
2 Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, et al. 2014. Conducting a microbiome study. Cell 158: 250-262.   DOI
3 Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, et al. 2019. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365.
4 Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, Yajnik CS, et al. 2020. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet 395: 75-88.   DOI
5 Teng F, Klinger C, Felix K, Bradley C, Wu E, Tran N, et al. 2016. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells. 44: 875-888.   DOI
6 Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, et al. 2020. PTH induces bone loss via microbial-dependent expansion of intestinal TNF(+) T cells and Th17 cells. Nat. Commun. 11: 468.   DOI
7 Awany D, Allali I, Chimusa ER. 2020. Dissecting genome-wide studies for microbiome-related metabolic diseases. Hum. Mol. Genet.
8 Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, et al. 2020. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J. Clin. Invest. 130: 1767-1781.   DOI
9 Yan H, Baldridge M, King KJB. 2018. Hematopoiesis and the bacterial microbiome. 132: 559-564.
10 Guo H, Chou W, Lai Y, Liang K, Tam J, Brickey W, et al. 2020. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. 370.
11 Staffas A, Burgos da Silva M, Slingerland A, Lazrak A, Bare C, Holman C, et al. 2018. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. 23: 447-457.e444.   DOI
12 Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, et al. 2019. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol. 10: 1360.   DOI
13 Davis EC, Dinsmoor AM, Wang M, Donovan SM. 2020. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. Dig. Dis. Sci. 65: 706-722.   DOI
14 McDonald M, Khoo W, Ng P, Xiao Y, Zamerli J, Thatcher P, et al. 2021. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. 184: 1330-1347.e1313.   DOI
15 Amoroso C, Perillo F, Strati F, Fantini M, Caprioli F, Facciotti F. 2020. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells 9.
16 Guanabens N, Filella X, Monegal A, Gomez-Vaquero C, Bonet M, Buquet D, et al. 2016. Reference intervals for bone turnover markers in Spanish premenopausal women. Clin. Chem. Lab. Med. 54: 293-303.   DOI
17 Jakeman SA, Henry CN, Martin BR, McCabe GP, McCabe LD, Jackson GS, et al. 2016. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. Am. J. Clin. Nutr. 104: 837-843.   DOI
18 Huttenhower C, Knight R, Brown CT, Caporaso JG, Clemente JC, Gevers D, et al. 2014. Advancing the microbiome research community. Cell 159: 227-230.   DOI
19 Fatkhullina A, Peshkova I, Dzutsev A, Aghayev T, McCulloch J, Thovarai V, et al. 2018. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. 49: 943-957.e949.   DOI
20 Guo D, Liu W, Zhang X, Zhao M, Zhu B, Hou T, et al. 2019. Duck egg white-derived peptide VSEE (val-ser-glu-glu) regulates bone and lipid metabolisms by Wnt/β-catenin signaling pathway and intestinal microbiota. Mol. Nutrition Food Res. 63: e1900525.
21 Gentile CL, Weir TL. 2018. The gut microbiota at the intersection of diet and human health. Science (New York, N.Y.) 362: 776-780.   DOI
22 Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55: 257-286.   DOI
23 Das Neves Borges P, Vincent TL, Marenzana M. 2017. Application of autofluorescence robotic histology for quantitative evaluation of the 3-dimensional morphology of murine articular cartilage. Microsc. Res. Tech. 80: 1351-1360.   DOI
24 Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, et al. 2014. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J. Immunol. 193: 3902-3913.   DOI
25 Kassem A, Henning P, Kindlund B, Lindholm C, Lerner UH. 2015. TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss. FASEB J. 29: 4449-4460.   DOI
26 Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. 2017. TLRs, future potential therapeutic targets for RA. Autoimmun. Rev. 16: 103-113.   DOI
27 Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. 2019. Small molecules from natural products targeting the Wnt/beta-catenin pathway as a therapeutic strategy. Biomed. Pharmacother. 117: 108990.   DOI
28 Bai Y, Li Y, Marion T, Tong Y, Zaiss M, Tang Z, et al. 2021. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. 116: 102564.   DOI
29 Lowery JW, Rosen V. 2018. The BMP Pathway and Its Inhibitors in the Skeleton. Physiol. Rev. 98: 2431-2452.   DOI
30 Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, et al. 2020. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. 140: 115551.   DOI
31 Cheng X, Yang Y, Schwebel D, Liu Z, Li L, Cheng P, et al. 2020. Population ageing and mortality during 1990-2017: A global decomposition analysis. 17: e1003138.   DOI
32 Rodrigues MR, Santo MA, Favero GM, Vieira EC, Artoni RF, Nogaroto V, et al. 2015. Metabolic surgery and intestinal gene expression: digestive tract and diabetes evolution considerations. World J. Gastroenterol. 21: 6990-6998.   DOI
33 Meier C, Schwartz AV, Egger A, Lecka-Czernik B. 2016. Effects of diabetes drugs on the skeleton. Bone 82: 93-100.   DOI
34 Sipila S, Tormakangas T, Sillanpaa E, Aukee P, Kujala UM, Kovanen V, et al. 2020. Muscle and bone mass in middle-aged women: role of menopausal status and physical activity. J. Cachexia Sarcopenia Muscle.
35 Farr J, Xu M, Weivoda M, Monroe D, Fraser D, Onken J, et al. 2017. Targeting cellular senescence prevents age-related bone loss in mice. 23: 1072-1079.   DOI
36 Rachner T, Coleman R, Hadji P, Hofbauer LJTlD, endocrinology. 2018. Bone health during endocrine therapy for cancer. 6: 901-910.
37 Follis SL, Bea J, Klimentidis Y, Hu C, Crandall CJ, Garcia DO, et al. 2019. Psychosocial stress and bone loss among postmenopausal women: results from the Women's Health Initiative. J. Epidemiol. Community Health. 73: 888-892.   DOI
38 Berg M, Monnin D, Cho J, Nelson L, Crits-Christoph A, Shapira M. 2019. TGFbeta/BMP immune signaling affects abundance and function of C. elegans gut commensals. Nat. Commun. 10: 604.   DOI
39 Li A, Cong Q, Xia X, Leong WF, Yeh J, Miao D, et al. 2017. Pharmacologic calcitriol inhibits osteoclast lineage commitment via the BMP-Smad1 and IκB-NF-κB pathways. J. Bone Mineral Res Official J. Am. Soc. Bone Mineral Res. 32: 1406-1420.   DOI
40 Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, et al. 2019. Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 83: 102058.   DOI
41 McHugh J. 2019. Wnt signalling in the gut microbiota-bone axis. Nat. Rev. Rheumatol. 15: 4.   DOI
42 Lee W-C, Guntur AR, Long F, Rosen CJ. 2017. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr. Rev. 38: 255-266.   DOI
43 Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, et al. 2016. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J. Bone Mineral Res. Official J. Am. Soc. Bone Mineral Res. 31: 65-75.   DOI
44 Willems HME, van den Heuvel E, Schoemaker RJW, Klein-Nulend J, Bakker AD. 2017. Diet and exercise: a match made in bone. Curr. Osteoporos Rep. 15: 555-563.   DOI
45 Haigh L, Bremner S, Houghton D, Henderson E, Avery L, Hardy T, et al. 2019. Barriers and facilitators to mediterranean diet adoption by patients with nonalcoholic fatty liver disease in Northern Europe. Clin. Gastroenterol. Hepatol. 17: 1364-1371 e1363.   DOI
46 Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, et al. 2017. Mechanical stress regulates bone metabolism through microRNAs. J. Cell Physiol. 232: 1239-1245.   DOI
47 Robling AG, Bonewald LF. 2020. The osteocyte: new insights. Annu. Rev. Physiol. 82: 485-506.   DOI
48 Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. 2019. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Invest. 129: 3214-3223.   DOI
49 Boda SK, Almoshari Y, Wang H, Wang X, Reinhardt RA, Duan B, et al. 2019. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomaterialia 85: 282-293.   DOI
50 Gerner RR, Raffatellu M. 2018. A worm's gut feelings: neuronal muscarinic and epithelial canonical wnt pathways promote antimicrobial defense. Immunity 48: 839-841.   DOI
51 Kovacs B, Vajda E, Nagy EE. 2019. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int. J. Mol. Sci. 20.
52 Kandyba E, Leung Y, Chen YB, Widelitz R, Chuong CM, Kobielak K. 2013. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc. Natl. Acad. Sci. USA 110: 1351-1356.   DOI
53 Cani PJG. 2018. Human gut microbiome: hopes, threats and promises. 67: 1716-1725.   DOI
54 Zmora N, Suez J, Elinav EJNrG, hepatology. 2019. You are what you eat: diet, health and the gut microbiota. 16: 35-56.
55 Nagpal R, Yadav H, Marotta F. 2014. Gut microbiota: the next-gen frontier in preventive and therapeutic medicine? Front. Med. (Lausanne) 1: 15.   DOI
56 Frost F, Kacprowski T, Ruhlemann M, Pietzner M, Bang C, Franke A, et al. 2021. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. 70: 522-530.
57 Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. 2016. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest. 126: 2049-2063.   DOI
58 Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, et al. 2019. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS lost trial. Gut 68: 263-270.   DOI
59 Luther J, Yorgan TA, Rolvien T, Ulsamer L, Koehne T, Liao N, et al. 2018. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci. Transl. Med. 10.
60 Zhou T, Heianza Y, Chen Y, Li X, Sun D, DiDonato JA, et al. 2019. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and changes in bone density in response to weight loss diets: the POUNDS lost trial. Diabetes Care 42: 1365-1371.   DOI
61 Dirckx N, Moorer MC, Clemens TL, Riddle RC. 2019. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15: 651-665.   DOI
62 Lee RH, Sloane R, Pieper C, Lyles KW, Adler RA, Van Houtven C, et al. 2019. Glycemic control and insulin treatment alter fracture risk in older men with type 2 diabetes mellitus. J. Bone Mineral Res. Official J. Am. Soc. Bone Mineral Res. 34: 2045-2051.   DOI
63 Gao R, Duff W, Chizen D, Zello GA, Chilibeck PD. 2019. The effect of a low glycemic index pulse-based diet on insulin sensitivity, insulin resistance, bone resorption and cardiovascular risk factors during bed rest. Nutrients 11.
64 Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JCC, Barratt MJ, et al. 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164: 859-871.   DOI
65 Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, et al. 2020. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-kappaB (nuclear factor kappaB) signals. Arterioscler. Thromb. Vasc. Biol. 40: 751-765.   DOI
66 Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, et al. 2019. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metabolism 30.
67 Li DY, Tang WHW. 2017. Gut Microbiota and Atherosclerosis. Curr. Atheroscler. Rep. 19: 39.   DOI
68 Zhou T, Heianza Y, Chen Y, Li X, Sun D, DiDonato J, et al. 2019. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and changes in bone density in response to weight loss diets: the POUNDS lost trial. 42: 1365-1371.   DOI
69 Zaiss MM, Jones RM, Schett G, Pacifici R. 2019. The gut-bone axis: how bacterial metabolites bridge the distance. J. Clin. Invest. 129: 3018-3028.   DOI
70 Wang S-L, Shao B-Z, Zhao S-B, Chang X, Wang P, Miao C-Y, et al. 2019. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis. 10: 391.   DOI
71 Marsland BJ, Gollwitzer ES. 2014. Host-microorganism interactions in lung diseases. Nature reviews. Immunology 14: 827-835.
72 Salazar VS, Gamer LW, Rosen V. 2016. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 12: 203-221.   DOI
73 Jennings A, Cashman KD, Gillings R, Cassidy A, Tang J, Fraser W, et al. 2018. A Mediterranean-like dietary pattern with vitamin D3 (10 microg/d) supplements reduced the rate of bone loss in older Europeans with osteoporosis at baseline: results of a 1-y randomized controlled trial. Am. J. Clin. Nutr. 108: 633-640.   DOI
74 Scher JU, Nayak RR, Ubeda C, Turnbaugh PJ, Abramson SB. 2020. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16: 282-292.   DOI
75 Amirhosseini M, Madsen RV, Escott KJ, Bostrom MP, Ross FP, Fahlgren A. 2018. GSK-3beta inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation. J. Cell Physiol. 233: 2398-2408.   DOI
76 Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, et al. 2019. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int. 30: 1003-1013.   DOI
77 Ackerman KE, Singhal V, Baskaran C, Slattery M, Campoverde Reyes KJ, Toth A, et al. 2019. Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: a randomised clinical trial. Br. J. Sports Med. 53: 229-236.   DOI
78 Yahiro Y, Maeda S, Morikawa M, Koinuma D, Jokoji G, Ijuin T, et al. 2020. BMP-induced Atoh8 attenuates osteoclastogenesis by suppressing Runx2 transcriptional activity and reducing the Rankl/Opg expression ratio in osteoblasts. 8: 32.   DOI
79 Majidinia M, Sadeghpour A, Yousefi B. 2018. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 233: 2937-2948.   DOI
80 Roser-Page S, Vikulina T, Weiss D, Habib M, Beck G, Pacifici R, et al. 2018. CTLA-4Ig (abatacept) balances bone anabolic effects of T cells and Wnt-10b with antianabolic effects of osteoblastic sclerostin. 1415: 21-33.   DOI
81 Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4: 293-305.   DOI
82 Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. 2014. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J. Cell Physiol. 229: 1822-1830.   DOI
83 Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, et al. 2019. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 15: 435-455.   DOI
84 Baron R, Kneissel M. 2013. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19: 179-192.   DOI
85 Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, et al. 2018. The Microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49: 1116-1131 e1117.   DOI
86 Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. 2014. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9: e92368.   DOI
87 Acharya KD, Gao X, Bless EP, Chen J, Tetel MJ. 2019. Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Sci. Rep. 9: 20192.   DOI
88 Luo Y, Chen GL, Hannemann N, Ipseiz N, Kronke G, Bauerle T, et al. 2015. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 22: 886-894.   DOI
89 Liu Y, Jin X, Hong H, Xiang L, Jiang Q, Ma Y, et al. 2020. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease.
90 Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. 2016. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J. Nutrition 146: 1298-1306.   DOI
91 Hetu-Arbour R, Tlili M, Bandeira Ferreira F, Abidin B, Kwarteng E, Heinonen KJSc. 2021. Cell-intrinsic Wnt4 promotes hematopoietic stem and progenitor cell self-renewal.
92 Whisner CM, Martin BR, Schoterman MHC, Nakatsu CH, McCabe LD, McCabe GP, et al. 2013. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Brit. J. Nutrition 110: 1292-1303.   DOI
93 Chaplin A, Parra P, Laraichi S, Serra F, Palou A. 2016. Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Mol. Nutrition Food Res. 60: 468-480.   DOI
94 Daily JP, Stumbo JR. 2018. Female athlete triad. Prim Care 45: 615-624.   DOI
95 Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. 2017. CD40-signalling abrogates induction of RORγt Treg cells by intestinal CD103 DCs and causes fatal colitis. 8: 14715.   DOI
96 Zhao Y, Cai Y, Cui LY, Tang W, Liu B, Zheng JJ, et al. 2019. Suppression of gut bacterial translocation ameliorates vascular calcification through inhibiting toll-like receptor 9-mediated BMP-2 expression. Oxid. Med. Cell Longev. 2019: 3415682.   DOI
97 Berthelot JM, Wendling D. 2020. Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 87: 31-36.   DOI
98 You L, Zhu L, Li PZ, Wang G, Cai H, Song J, et al. 2020. Dysbacteriosis-derived lipopolysaccharide causes embryonic osteopenia through retinoic-acid-regulated DLX5 expression. Int. J. Mol. Sci. 21.
99 Hernandez CJ, Guss JD, Luna M, Goldring SR. 2016. Links between the microbiome and bone. J. Bone Miner. Res. 31: 1638-1646.   DOI
100 Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. 2016. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA 113: E7554-E7563.   DOI
101 Lee K, Chung YH, Ahn H, Kim H, Rho J, Jeong D. 2016. Selective regulation of MAPK signaling mediates RANKL-dependent osteoclast differentiation. Int. J. Biol. Sci. 12: 235-245.   DOI
102 Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, et al. 2017. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat. Immunol. 18: 675-682.   DOI
103 Martin M, Sansalone V, Cooper DML, Forwood MR, Pivonka P. 2019. Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model. Biomech. Model Mechanobiol. 18: 1475-1496.   DOI
104 Li D, Gao C, Zhang F, Yang R, Lan C, Ma Y, et al. 2020. Seven facts and five initiatives for gut microbiome research. Protein Cell. 11: 391-400.   DOI
105 Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359: 1151-1156.   DOI
106 Veronese N, Koyanagi A, Stubbs B, Cooper C, Guglielmi G, Rizzoli R, et al. 2019. Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin. Nutr. 38: 2735-2739.   DOI
107 Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. 2015. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology 156: 3169-3182.   DOI
108 Tilg H, Zmora N, Adolph TE, Elinav E. 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20: 40-54.   DOI
109 Haro C, Garcia-Carpintero S, Rangel-Zuniga OA, Alcala-Diaz JF, Landa BB, Clemente JC, et al. 2017. Consumption of two healthy dietary patterns restored microbiota dysbiosis in obese patients with metabolic dysfunction. Mol. Nutr. Food Res. 61.
110 Palomeras-Vilches A, Vinals-Mayolas E, Bou-Mias C, Jorda-Castro M, Aguero-Martinez M, Busquets-Barcelo M, et al. 2019. adherence to the mediterranean diet and bone fracture risk in middle-aged women: a case control study. Nutrients 11.
111 Noel SE, Mangano KM, Mattei J, Griffith JL, Dawson-Hughes B, Bigornia S, et al. 2020. Dietary approaches to stop hypertension, mediterranean, and alternative healthy eating indices are associated with bone health among Puerto Rican adults from the Boston Puerto Rican osteoporosis study. Am. J. Clin. Nutr. 111: 1267-1277.   DOI
112 Qi X, Zhang Y, Guo H, Hai Y, Luo Y, Yue T. 2019. Mechanism and intervention measures of iron side effects on the intestine. Crit. Rev. Food Sci. Nutr. 1-13.
113 Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. 2017. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J. Am. Coll Nutr. 36: 497-506.   DOI
114 Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, et al. 2020. Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J. Bone Miner. Res. 35: 801-820.   DOI
115 Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, et al. 2019. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt regulatory T cells and exacerbate colitis in mice. Immunity 50.
116 Negi S, Das D, Pahari S, Nadeem S, Agrewala JJFii. 2019. Potential role of gut microbiota in induction and regulation of innate immune memory. 10: 2441.   DOI
117 Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, et al. 2012. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J. Bone Miner. Res. 27: 342-351.   DOI
118 Kiper P, Saito H, Gori F, Unger S, Hesse E, Yamana K, et al. 2016. Cortical-bone fragility--insights from sFRP4 deficiency in Pyle's Disease. 374: 2553-2562.   DOI
119 Schepper JD, Collins FL, Rios-Arce ND, Raehtz S, Schaefer L, Gardinier JD, et al. 2019. Probiotic Lactobacillus reuteri prevents postantibiotic bone loss by reducing intestinal dysbiosis and preventing barrier disruption. J. Bone Miner. Res. 34: 681-698.   DOI
120 Gan D, Liu M, Xu T, Wang K, Tan H, Lu X. 2018. Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. J. Biomed. Mater. Res. Part A. 106: 2613-2624.   DOI
121 Walsh MC, Takegahara N, Kim H, Choi Y. 2018. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat. Rev. Rheumatol. 14: 146-156.   DOI
122 Kajiya H, Okamoto F, Nemoto T, Kimachi K, Toh-Goto K, Nakayana S, et al. 2010. RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 48: 260-269.   DOI
123 Kong N, Lan Q, Su W, Chen M, Wang J, Yang Z, et al. 2012. Induced T regulatory cells suppress osteoclastogenesis and bone erosion in collagen-induced arthritis better than natural T regulatory cells. 71: 1567-1572.   DOI
124 Negi S, Das DK, Pahari S, Nadeem S, Agrewala JN. 2019. Potential role of gut microbiota in induction and regulation of innate immune memory. Front. Immunol. 10: 2441.   DOI
125 Pacifici R. 2016. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann. NY Acad. Sci. 1364: 11-24.   DOI
126 Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141.   DOI
127 Omi M, Kaartinen V, Mishina Y. 2019. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J. Biol. Chem. 294: 17818-17836.   DOI
128 Whisner CM, Castillo LF. 2018. Prebiotics, bone and mineral metabolism. Calcif Tissue Int. 102: 443-479.   DOI
129 Zaiss M, Jones R, Schett G, Pacifici RJTJoci. 2019. The gut-bone axis: how bacterial metabolites bridge the distance. 129: 3018-3028.   DOI
130 Bradley E, Carpio L, van Wijnen A, McGee-Lawrence M, Westendorf JJPr. 2015. Histone deacetylases in bone development and skeletal disorders. 95: 1359-1381.   DOI
131 Kobayashi Y, Uehara S, Udagawa N, Takahashi N. 2016. Regulation of bone metabolism by Wnt signals. J. Biochem. 159: 387-392.   DOI