• Title/Summary/Keyword: Metabolic Profiling

Search Result 134, Processing Time 0.027 seconds

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

  • Bae, Soo-Jung;Park, Young-Hwan;Bae, Hyeun-Jong;Jeon, Junhyun;Bae, Hanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1157-1162
    • /
    • 2017
  • The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

Application of metabolic profiling for biomarker discovery

  • Hwang, Geum-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.19-27
    • /
    • 2007
  • An important potential of metabolomics-based approach is the possibility to develop fingerprints of diseases or cellular responses to classes of compounds with known common biological effect. Such fingerprints have the potential to allow classification of disease states or compounds, to provide mechanistic information on cellular perturbations and pathways and to identify biomarkers specific for disease severity and drug efficacy. Metabolic profiles of biological fluids contain a vast array of endogenous metabolites. Changes in those profiles resulting from perturbations of the system can be observed using analytical techniques, such as NMR and MS. $^1H$ NMR was used to generate a molecular fingerprint of serum or urinary sample, and then pattern recognition technique was applied to identity molecular signatures associated with the specific diseases or drug efficiency. Several metabolites that differentiate disease samples from the control were thoroughly characterized by NMR spectroscopy. We investigated the metabolic changes in human normal and clinical samples using $^1H$ NMR. Spectral data were applied to targeted profiling and spectral binning method, and then multivariate statistical data analysis (MVDA) was used to examine in detail the modulation of small molecule candidate biomarkers. We show that targeted profiling produces robust models, generates accurate metabolite concentration data, and provides data that can be used to help understand metabolic differences between healthy and disease population. Such metabolic signatures could provide diagnostic markers for a disease state or biomarkers for drug response phenotypes.

  • PDF

Advances in Plant Metabolomics (식물 대사체 연구의 진보)

  • Kim, Suk-Won;Chung, Hoe-Il;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.161-169
    • /
    • 2006
  • Plant metabolomics is a plant biology field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. For holistic approach, metabolomics frequently uses chemometrics or multivariate statistical analysis of metabolic profillings. In plant biology, metabolomics is useful to determine functions of genes often in combination with DHA microarrays by analyzing tagged mutants of the model plants Arabidopsis and rice. This review paper attempted to introduce basic concepts of metabolomics and practical uses of multivariate statistical analysis of metabolic profiling obtained by $^1$H HMR and Fourier transform infrared spectrometry.

Study of Metabolic Profiling Changes in Colorectal Cancer Tissues Using 1D 1H HR-MAS NMR Spectroscopy

  • Kim, Siwon;Lee, Sangmi;Maeng, Young Hee;Chang, Weon Young;Hyun, Jin Won;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1467-1472
    • /
    • 2013
  • Metabolomics is a field that studies systematic dynamics and secretion of metabolites from cells to understand biological pathways based on metabolite changes. The metabolic profiling of intact human colorectal tissues was performed using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, which was unnecessary to extract metabolites from tissues. We used two different groups of samples, which were defined as normal and cancer, from 9 patients with colorectal cancer and investigated the samples in NMR experiments with a water suppression pulse sequence. We applied target profiling and multivariative statistical analysis to the analyzed 1D NMR spectra to identify the metabolites and discriminate between normal and cancer tissues. Cancer tissue showed higher levels of arginine, betaine, glutamate, lysine, taurine and lower levels of glutamine, hypoxanthine, isoleucine, lactate, methionine, pyruvate, tyrosine relative to normal tissue. In the OPLS-DA (orthogonal partial least square discriminant analysis), the score plot showed good separation between the normal and cancer groups. These results suggest that metabolic profiling of colorectal cancer could provide new biomarkers.

Diagnostic Evaluation of Enzyme Activity Related to Steroid Metabolism by Mass Spectrometry-Based Steroid Profiling

  • Choi, Man Ho;Chung, Bong Chul
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • Gas chromatography-mass spectrometry (GC-MS) methods have been used extensively in clinical steroid analyses. Evaluating the metabolic ratios of precursors to products by accurate quantification of individual steroid levels in biological samples can reveal the activities of enzymes associated with steroid metabolism. This review article discusses the impact of GC-MS-based steroid profiling on our understanding of the biochemical role of steroids and their metabolic enzymes in hormone-dependent diseases, such as congenital adrenal hyperplasia (CAH), cortisol-mediated hypertension, apparent mineralocorticoid excess (AME), male-pattern baldness, and breast and thyroid cancers. Steroid profiling is a comprehensive analytical technique that can be applied whenever the highest specificity is required and may be a reasonable initial diagnostic approach.

Metabolic profiling study of ketoprofen-induced toxicity using 1H NMR spectroscopy coupled with multivariate analysis

  • Jung, Jee-Youn;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.54-68
    • /
    • 2011
  • $^1H$ nuclear magnetic resonance (NMR) spectroscopy of biological samples has been proven to be an effective and nondestructive approach to probe drug toxicity within an organism. In this study, ketoprofen toxicity was investigated using $^1H$-NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic test of ketoprofen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) derived from $^1H$-NMR spectra of urinary samples showed clear separation between the vehicle-treated control and ketoprofen-treated groups. Moreover, PCA derived from endogenous metabolite concentrations through targeted profiling revealed a dose-dependent metabolic shift between the vehicle-treated control, low-dose ketoprofen-treated (10 mg/kg body weight), and high-dose ketoprofen-treated (50 mg/kg) groups coinciding with their gastric damage scores after ketoprofen administration. The resultant metabolic profiles demonstrated that the ketoprofen-induced gastric damage exhibited energy metabolism perturbations that increased urinary levels of citrate, cis-aconitate, succinate, and phosphocreatine. In addition, ketoprofen administration induced an enhancement of xenobiotic activity in fatty oxidation, which caused increase levels of N-isovalerylglycine, adipate, phenylacetylglycine, dimethylamine, betaine, hippurate, 3-indoxylsulfate, N,N-dimethylglycine, trimethyl-N-oxide, and glycine. These findings demonstrate that $^1H$-NMR-based urinary metabolic profiling can be used for noninvasive and rapid way to diagnose adverse drug effects and is suitable for explaining the possible biological pathways perturbed by nonsteroidal anti-inflammatory drug toxicity.

Isolation, Characterization, and Metabolic Profiling of Ceratorhiza hydrophila from the Aquatic Plant Myriophyllum spicatum

  • Elsaba, Yasmin M.;Boroujerdi, Arezue;Abdelsalam, Asmaa
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.110-120
    • /
    • 2022
  • The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.

Practical Guide to NMR-based Metabolomics - II : Metabolite Identification & Quantification

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • Metabolite identification and quantification are one of the foremost important issues in metabolomics. In NMR based metabolomics, mainly one-dimensional proton NMR spectra of biofluids, such as urine and serum are measured. However, it is not always easy to identify and quantify metabolites in one-dimensional proton NMR spectra. This article introduces useful public metabolite databases, metabolic profiling software, and articles.

Development of a GC-MS Diagnostic Method with Computer-aided Automatic Interpretation for Metabolic Disorders (GC-MS 크로마토그램의 컴퓨터 자동해석을 이용한 유전성 대사질환의 진단법 개발)

  • Yoon, Hye-Ran
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.40-51
    • /
    • 2006
  • Purpose: A personal computer-based system was developed for automated metabolic profiling of organic aciduria and aminoacidopathy by gas chromatography-mass spectrometry and data interpretation for the diagnosis of metabolic disorders Methods: For automatic data profiling and interpretation, we compiled retention time, two target ions and their intensity ratio for 77 organic acids and 13 amino acids metabolites. Metabolites above the cut-off values were flagged as abnormal compounds. The data interpretation was a based on combination of flagged metabolites. Diagnostic or index metabolites were categorized into three groups, "and", "or" and "NO" compiled for each disorder to improve the specificity of the diagnosis. Groups "and" and "or" comprised essential and optional compounds, respectively, to reach a specific diagnosis. Group "NO" comprised metabolites that must be absent to make a definite diagnosis. We tested this system by analyzing patients with confirmed Propionic aciduria and others. Results: In all cases, the diagnostic metabolites were identified and correct diagnosis was founded to be made among the possible disease suggested by the system. Conclusion: The study showed that the developed method could be the method of choices in rapid, sensitive and simultaneous screening for organic aciduria and amino acidopathy with this simplified automated system.

  • PDF

UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

  • Sun, Bai-Shen;Xu, Ming-Yang;Li, Zheng;Wang, Yi-Bo;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.277-290
    • /
    • 2012
  • The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products.