Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02063

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.  

Bae, Soo-Jung (Department of Biotechnology, Yeungnam University)
Park, Young-Hwan (Department of Biotechnology, Yeungnam University)
Bae, Hyeun-Jong (Department of Bioenergy Science and Technology, Chonnam National University)
Jeon, Junhyun (Department of Biotechnology, Yeungnam University)
Bae, Hanhong (Department of Biotechnology, Yeungnam University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.6, 2017 , pp. 1157-1162 More about this Journal
Abstract
The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.
Keywords
Trichoderma; molecular identification; metabolic profiling; cell wall degradation enzyme activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Samuels GJ. 2006. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96: 195-206.   DOI
2 Benitez T, Rincon AM, Limon MC, Codon AC. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249-260.
3 Munir S, Jamal Q, Bano K, Sherwani SK, Abbas MN, Azam S, et al. 2014. Trichoderma and biocontrol genes. Sci. Agric. 5: 40-45.
4 Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7: 89-123.
5 Romao-Dumaresq AS, de Araujo WL, Talbot NJ, Thornton CR. 2012. RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7: e47888.   DOI
6 Schuster A, Schmoll M. 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87: 787-799.   DOI
7 Bae S-J, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, et al. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92: 128-138.   DOI
8 Borman AM, Linton CJ, Miles S-J, Johnson EM. 2008. Molecular identification of pathogenic fungi. J. Antimicrob. Chemother. 61: i7-i12.   DOI
9 Chen XY, Qi YD, Wei JH, Zhang Z, Wang DL, Feng JD, Gan BC. 2010. Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol. 27: 495-503.
10 Roblems P. 2003. Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot. 38: 113-124.   DOI
11 Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, et al. 2011. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 3: 1220-1232.   DOI
12 Degenkolb T, Grafenhan T, Nirenberg HI, Gams W, Bruckner H. 2006. Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J. Agric. Food Chem. 54: 7047-7061.   DOI
13 Romeh A. 2013. Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr. J. Agric. Res. 8: 4360-4364.
14 Bailey BA, Lumsden RD. 1998. Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In Kubicek CP, Harman GE (eds.). Trichoderma and Gliocladium. Taylor and Francis Ltd., Bristol. London, UK.
15 Chandra S, Sharma AK. 2009. Antifungal and spectral studies of Cr(III) and Mn(II) complexes derived from 3,3'- thiodipropionic acid derivative. Res. Lett. Inorg. Chem. 2009: 945670.
16 Rane RA, Bangalore P, Borhade SD, Khandare PK. 2013. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4- oxadiazole derivatives as antimicrobial and anti-tubercular agents. Eur. J. Med. Chem. 70: 49-58.   DOI
17 Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma sp., opportunistic avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56.   DOI
18 Bae H. 2011. Trichoderma species as abiotic and biotic stress quenchers in plants. Res. J. Biotechnol. 6: 73-79.
19 Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 60: 3279-3295.   DOI
20 Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, et al. 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. Plant Microbe Interact. 24: 336-351.   DOI
21 Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD, et al. 1997. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl. Environ. Microbiol. 63: 3189-3198.
22 Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. 2011. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl. Environ. Microbiol. 77: 4361-4370.   DOI
23 Woo SL, Scala F, Ruocco M, Lorito M. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96: 181-185.   DOI
24 Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40: 1-10.   DOI
25 Mitchell AM, Strobel GA, Moore E, Robison R, Sears J. 2010. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156: 270-277.   DOI
26 McIntyre M, Nielsen J, Arnau J, van der Brink H, Hansen K, Madrid S. 2004. Proceedings of the 7th European Conference on Fungal Genetics. Copenhagen, Denmark.
27 Ajesh K, Sreejith K. 2009. Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30: 999-100.   DOI
28 Kummerer K. 2009. Antibiotics in the aquatic environment - a review-part I. Chemosphere 75: 417-434.   DOI
29 Shoresh M, Harman GE, Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48: 21-43.   DOI
30 Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C , Monte E , Garcia-Acha I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66: 1890-1898.   DOI
31 Morandim ADA, Pin AR, Pietro NAS, Alecio AC, Kato MJ, Young CM, et al. 2010. Composition and screening of antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves. Afr. J. Biotechnol. 9: 6135-6139.
32 Larena I, Salazar O, Gonzalez V, Julian MC, Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J. Biotechnol. 75: 187-194.   DOI
33 Park SU, Lim H-S, Park K-C, Park Y-H, Bae H. 2013. Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. J. Ginseng Res. 36: 107-113.
34 Rouini M-R, Ardakani YH, Soltani F, Aboul-Enein HY, Foroumadi A. 2006. Development and validation of a rapid HPLC method for simultaneous determination of tramadol, and its two main metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830: 207-211.   DOI
35 Bailey AV, De Lucca AJ, Moreau JP. 1989. Antimicrobial properties of some erucic acid-glycolic acid derivatives. J. Am. Oil Chem. Soc. 66: 932-934.   DOI
36 Policegoudra RS, Goswami S, Aradhya SM, Chatterjee S, Datta S, Sivaswamy R, et al. 2012. Bioactive constituents of Homalomena aromatica essential oil and its antifungal activity against dermatophytes and yeasts. J. Mycol. Med. 22: 83-87.   DOI
37 Al-Jafari A-H, Vila R, Freixa B, Tomi F, Casanova J, Costa J, Canigueral S. 2011. Composition and antifungal activity of the essential oil from the rhizome and roots of Ferula hermonis. Phytochemistry 72: 1406-1413.   DOI
38 Cheng S-S, Chung M-J, Lin C-Y, Wang Y-N, Chang S-T. 2012. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents. J. Agric. Food Chem. 60: 124-128.   DOI
39 Li G-X, Liu Z-Q. 2009. Unusual antioxidant behavior of alpha- and gamma-terpinene in protecting methyl linoleate, DNA, and erythrocyte. J. Agric. Food Chem. 57: 3943-3948.   DOI
40 Bencini A, Lippolis V. 2010. 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coordin. Chem. Rev. 254: 2096-2180.   DOI
41 Markovich N, Kononova GL. 2003. Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Appl. Biochem. Microbiol. 39: 341-351.   DOI
42 Vieira PM, Coelho ASG, Steindorff AS, de Siqueira SJL, Silva RDN, Ulhoa CJ. 2013. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14: 1-11.   DOI