• Title/Summary/Keyword: Meshless Methods

Search Result 45, Processing Time 0.027 seconds

Analysis on a Simple Waveguide Using Meshfree Method (무요소법을 이용한 waveguide 내의 필드 분포 해석)

  • Lee, Chany;Woo, Dong-Kyun;Jung, Hyun-Kyo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.190-192
    • /
    • 2008
  • This paper shows the formulation of fast moving least square reproducing kernel method (FMLSRKM) which is a kind of meshfree methods. FMLSRKM has some advantages compared to conventional numerical techniques such as finite element method. For simple analysis on a rectangular waveguide, point collocation scheme is introduced and applied.

  • PDF

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.

Development of a new method for improving finite element solutions by placing nodes arbitrarily (임의의 절점 추가로 개선된 유한요소해를 얻는 새로운 방법의 개발)

  • Kim, Hye-Yeong;Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.674-677
    • /
    • 2008
  • An advanced computational strategy for improvement of the accuracy of the structural analysis is developed in this paper. The finite elements connecting the primary nodes are constructed as a ground mesh in a domain, and the secondary nodes can be placed arbitrarily without reconstruction of a mesh. The support domains of the secondary nodes are defined on the basis of finite element mesh, and the shape functions are constructed by using MLS(moving least square) approximations. The present method is useful for controlling the errors without reconstruction of mesh when you add or remove nodes in a domain.

  • PDF

Least-Squares Meshfree Method and Integration Error (최소 제곱 무요소법과 적분 오차)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1605-1612
    • /
    • 2001
  • Least-squares meshfree method is presented. Conventional meshfree methods based on the Galerkin formulation suffer from inaccurate numerical integration. Least-squares formulation exhibits rather different integration-related characteristics. It is demonstrated through numerical examples that least-squares formulation is much more robust to integration errors than the Galerkin's. Therefore efficient meshfree methods can be devised by combining very simple integration algorithms and least-squares formulation.

PATCHWISE REPRODUCING POLYNOMIAL PARTICLE METHOD FOR THICK PLATES: BENDING, FREE VIBRATION, AND BUCKLING

  • Kim, Hyunju;Jang, Bongsoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.67-85
    • /
    • 2013
  • Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.

A Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Lee, Sang-Ju;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.495-500
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity. Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

  • PDF

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang;Zhu, He-Hua;Guo, Sheng-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.119-129
    • /
    • 2008
  • A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

Computation of dilute polymer solution flows using BCF-RBFN based method and domain decomposition technique

  • Tran, Canh-Dung;Phillips, David G.;Tran-Cong, Thanh
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • This paper reports the suitability of a domain decomposition technique for the hybrid simulation of dilute polymer solution flows using Eulerian Brownian dynamics and Radial Basis Function Networks (RBFN) based methods. The Brownian Configuration Fields (BCF) and RBFN method incorporates the features of the BCF scheme (which render both closed form constitutive equations and a particle tracking process unnecessary) and a mesh-less method (which eliminates element-based discretisation of domains). However, when dealing with large scale problems, there appear several difficulties: the high computational time associated with the Stochastic Simulation Technique (SST), and the ill-condition of the system matrix associated with the RBFN. One way to overcome these disadvantages is to use parallel domain decomposition (DD) techniques. This approach makes the BCF-RBFN method more suitable for large scale problems.

A MONTE CARLO METHOD FOR SOLVING HEAT CONDUCTION PROBLEMS WITH COMPLICATED GEOMETRY

  • Shentu, Jun;Yun, Sung-Hwan;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.207-214
    • /
    • 2007
  • A new Monte Carlo method for solving heat conduction problems is developed in this study. Differing from other Monte Carlo methods, it is a transport approximation to the heat diffusion process. The method is meshless and thus can treat problems with complicated geometry easily. To minimize the boundary effect, a scaling factor is introduced and its effect is analyzed. A set of problems, particularly the heat transfer in the fuel sphere of PBMR, is calculated by this method and the solutions are compared with those of an analytical approach.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.