• Title/Summary/Keyword: Mesh-Normal Vector

Search Result 32, Processing Time 0.024 seconds

Sensorless Vector Control Parameters Estimation of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법(FEM)과 프라이자흐모델을 사용한 동기형 릴럭턴스 모터의 센서리스 백터제어 제정수 산정)

  • Kim, Hong-Seok;Park, Jung-Min;Lee, Min-Myung;Lee, Jung-Ho;Chun, Jang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.673-674
    • /
    • 2006
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the sensorless vector control parameters estimation of SynRM under saturation and iron loss. Comparisons are given with dynamic characteristics of normal single B-H nonlinear solutions and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively.

  • PDF

A Study on Error Verification of STL format for Rapid Prototyping System (급속조형시스템을 위한 STL 포멧의 오류 검증에 관한 연구)

  • 최홍태;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.597-601
    • /
    • 1996
  • Nowadays, the STL format, industrial standard data, which approximates three dimensional CAD model to triangular facets, is used for RP(Rapid Prototyping) system. Because most RP machine is accpted to only two dimensional line segments, but some STL translators are sometimes poorly implemented. The error verifying process is as follows. 1) Remove facets with two or more vertices equal to each other. 2) Fix overlapping error such as more than three facets adjacent to an edge. 3) Fill holes in the mesh by using Delaunay triangulation method. 4) Repair wrong direction and value of normal vectors. This paper is concerned with searching the mentioned errors in advance and modifying them.

  • PDF

Simplification of 3D Polygonal Mesh Using Non-Uniform Subdivision Vertex Clustering (비균일 분할 정점 군집화를 이용한 3차원 다각형 메쉬의 단순화)

  • 김형석;박진우;김희수;한규필;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1937-1945
    • /
    • 1999
  • In paper, we propose a 3D polygonal mesh simplification technique based on vertex clustering. The proposed method differentiates the size of each cluster according to the local property of a 3D object. We determine the size of clusters by considering the normal vector of triangles and the vertex distribution. The subdivisions of cluster are represented by octree. In this paper, we use the Harsdorff distance between the original mesh and the simplified one as a meaningful error value. Because proposed method adaptively determine the size of cluster according to the local property of the mesh, it has smaller error as compared with the previous methods and represent the small regions on detail. Also it can generate a multiresolution model and selectively refine the local regions.

  • PDF

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

Prediction of Earings in the Deep Drawing Processes of a Cylindrical Cup (원통컵 디프드로잉 공정의 귀발생 예측)

  • 이승열;이승열;금영탁;정관수;박진무
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.222-232
    • /
    • 1995
  • The planar anisotripic FEM analysis for predicting earing profiles and draw-in amounts in the deep-drawing process is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vector and normal contact pressure. The consistent full set of governing relations, which is comprising euilbrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameters. The linear triangular membrane elements are used for depicting the formed sheet. In the numerical simulations of deep drawing processes of a flat-top cylindrical cup for 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Evaluation of EDISION's performance through supersonic flow analysis (초음속 유동을 통한 EDISON 성능 평가)

  • Jeong, Gyeong-Seon;Sin, Yeong-Jin
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.337-342
    • /
    • 2013
  • 이번 연구에서는 de Laval nozzle를 이용하여 다양한 유체해석 모델과 프로그램을 비교하여 그 성능을 파악하였다. de Laval nozzle은 eigenvalue에 의해 eigenvector값이 '-'와 '+'값을 동시에 갖는 물리현상을 내포하고 있으며, 압력조건에 따라 내부에서 Normal shock이 발생하게 된다. 이러한 non-linearity를 현재 우리가 주로 사용하고 있는 상용프로그램(cfx, fluent)과 EDISON, 직접 코딩한 프로그램(Matlab이용)이 얼마나 잘 표현하는지 알아보았다. 그 결과 Van Leer Vector Splitting을 이용할 경우 물리현상을 제일 잘 표현 하였다. 또한 난류 유동(Turbulence flow)을 고려하게 될 경우, Mesh가 Boundary layer를 표현할 정도로 정밀하지 못하다면 제대로 된 해석 결과를 얻을 수 없었으며, Wall 근처에서 Non-slip condition에 의해 Vortex가 형성되고, 이 Vortex가 Back flow를 유도하여 해가 수렴하는데 방해를 하게 됨을 알 수 있었다. 이를 방지하기 위해서는 유동이 잘 표현될 수 있도록 적절한 Computational environment를 형성해 주는 것이 매우 중요하다.

  • PDF

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

A Geographic Distributed Hash Table for Virtual Geographic Routing in MANET (MANET에서 가상 위치 기반 라우팅을 위한 지역 분산 해쉬 테이블 적용 방법)

  • Ko, Seok-Kap;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.58-65
    • /
    • 2008
  • This paper presents a new geographic distributed hash table (GDHT) for MANETs or Mesh networks, where virtual geographic protocol is used. In previous wort GDHT is applied to a network scenario based on two dimensional Cartesian coordinate system. Further, logical data space is supposed to be uniformly distributed. However, mobile node distribution in a network using virtual geographic routing is not matched to data distribution in GDHT. Therefore, if we apply previous GDHT to a virtual geographic routing network, lots of DHT data are probably located at boundary nodes of the network or specific nodes, resulting in long average-delay to discover resource (or service). Additionally, in BVR(Beacon Vector Routing) or LCR(Logical Coordinate Routing), because there is correlation between coordinate elements, we cannot use normal hash function. For this reason, we propose to use "geographic hash function" for GDHT that matches data distribution to node distribution and considers correlation between coordinate elements. We also show that the proposed scheme improves resource discovery efficiently.

TOPICAL GENE DELIVERY TO NORMAL ORAL EPITHELIUM USING ADENOVIRUS IN ORGAN CULTURE MODEL (조직 배양 모형에서 정상 구강 점막 상피에 대한 국소 유전자 요법)

  • Kim, Tae-Hwan;Kwak, Myung-Ho;Lee, Choon-Ho;Park, Jun-Woo;Park, Young-Wook;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Background: Though it is clear that many types of viruses can infect the oral mucosa, its condition for infection is unclear. The purpose of this study was to analyze the conditions for viral infection of normal oral mucosa and explore the possibility of topical gene therapy to oral mucosa using a viral vector. Methods: Freshly taken fragments of the palate and the tongue of mice were used for organ culture. The specimens were exposed to green fluorescent protein (GFP)-adenoviral vector for 1 hour except for the control. Initial viral titer was $6.3{\times}10^{11}\;pfu/ml$ and the virus was diluted to working concentrations. The dilution ratio was 1:1,000 ($6.3{\times}10^8\;pfu/ml$), 1:10,000 ($6.3{\times}10^7\;pfu/ml$), and 1:100,000 ($6.3{\times}10^6\;pfu/ml$). They were then cultured on a stainless steel wire mesh in an organ culture dish. The specimens were stereoscopically examined every 24 hours for 6 days, after which they were fixed and analyzed through immunohistochemical methods Results: There was no visible expression in the control, $6.3{\times}10^6\;pfu/ml$, and $6.3{\times}10^7\;pfu/ml$ groups. Initial expression was observed at 24 hours after infection in both the palate and the tongue in $6.3{\times}10^8\;pfu/ml$ and the expression significantly increased until 3 days in the palate and 2 days in the tongue after infection (P<0.05). In both groups, the expression was mostly observed at the resection margin. Immunohistochemical studies showed that the epithelial cells were positive to GFP. Conclusion: The present study showed that topically applied adenovirus containing specific genetic information of GFP could successfully transduce GFP in normal oral epithelial cells at the resection margin in organ culture in terms of dose and exposure time.

Mesh Simplification for Preservation of Characteristic Features using Surface Orientation (표면의 방향정보를 고려한 메쉬의 특성정보의 보존)

  • 고명철;최윤철
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.458-467
    • /
    • 2002
  • There has been proposed many simplification algorithms for effectively decreasing large-volumed polygonal surface data. These algorithms apply their own cost function for collapse to one of fundamental simplification unit, such as vertex, edge and triangle, and minimize the simplification error occurred in each simplification steps. Most of cost functions adopted in existing works use the error estimation method based on distance optimization. Unfortunately, it is hard to define the local characteristics of surface data using distance factor alone, which is basically scalar component. Therefore, the algorithms cannot preserve the characteristic features in surface areas with high curvature and, consequently, loss the detailed shape of original mesh in high simplification ratio. In this paper, we consider the vector component, such as surface orientation, as one of factors for cost function. The surface orientation is independent upon scalar component, distance value. This means that we can reconsider whether or not to preserve them as the amount of vector component, although they are elements with low scalar values. In addition, we develop a simplification algorithm based on half-edge collapse manner, which use the proposed cost function as the criterion for removing elements. In half-edge collapse, using one of endpoints in the edge represents a new vertex after collapse operation. The approach is memory efficient and effectively applicable to the rendering system requiring real-time transmission of large-volumed surface data.

  • PDF