• Title/Summary/Keyword: Mesh optimization

Search Result 215, Processing Time 0.027 seconds

An Effective mesh smoothing technique for the mesh constructed by the mesh compression technique (격자압축을 이용해 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.331-334
    • /
    • 2003
  • In the finite element simulation of hot forging processes using hexahedron, remeshing of a flash is very difficult. The mesh compression method is a remeshing technique to construct an effective hexahedral mesh. However, because mesh is distorted during the compression procedure or the mesh compression method, mesh smoothing is necessary to improve the mesh Qualify. in this study, several geometric mesh smoothing techniques and a matrix norm optimization technique are applied and compared which is more adaptive to the mesh compression method.

  • PDF

Delaunay mesh generation technique adaptive to the mesh Density using the optimization technique (최적화 방법을 이용한 Delaunay 격자의 내부 격자밀도 적응 방법)

  • Hong J. T.;Lee S. R.;Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.75-78
    • /
    • 2004
  • A mesh generation algorithm adapted to the mesh density map using the Delaunay mesh generation technique is developed. In the finite element analyses of the forging processes, the numerical error increases as the process goes on because of discrete property of the finite elements or severe distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical discretization error will be highly increased. However, it is too time consuming to use a uniformly fine mesh in the whole domain to reduce the expected numerical error. Therefore, it is necessary to construct locally refined mesh at the region where the error is concentrated such as at the die corner. In this study, the point insertion algorithm is used and the mesh size is controlled by moving nodes to optimized positions according to a mesh density map constructed with a posteriori error estimation. An optimization technique is adopted to obtain a good position of nodes. And optimized smoothing techniques are also adopted to have smooth distribution of the mesh and improve the mesh element quality.

  • PDF

An Effective Mesh Smoothing Technique for the Mesh Constructed by the Mesh Compression Technique (격자압축법을 이용하여 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.340-347
    • /
    • 2003
  • In the rigid-plastic finite element simulation of hot forging processes using hexahedral mesh, remeshing of a flash is important for design and control of the process to obtain desirable defect-free products. The mesh compression method is a remeshing technique which enables the construction of an effective hexahedral mesh in the flash. However, because the mesh is distorted during the compression procedure of the mesh compression method, when it is used in resuming the analysis, it causes discretization error and decreases the conversance rate. Therefore, mesh smoothing is necessary to improve the mesh quality. In this study, several geometric mesh smoothing techniques and optimization techniques are introduced and modified to improve mesh quality. Then, the most adaptive technique is recommended for the mesh compression method.

Novel Mesh Regeneration Method Using the Structural Deformation Analysis for 3D Shape Optimization of Electromagnetic Device (전자소자의 3차원 형상최적화를 위한 구조변형 해석을 이용한 새로운 요소망 변형법)

  • Yao Yingying;Jae Seop Ryu;Chang Seop Koh;Dexin Xie
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.247-253
    • /
    • 2003
  • A novel finite element mesh regeneration method is presented for 3D shape optimization of electromagnetic devices. The method has its theoretical basis in the structural deformation of an elastic body. When the shape of the electromagnetic devices changes during the optimization process, a proper 3D finite element mesh can be easily obtained using the method from the initial mesh. For real engineering problems, the method guarantees a smooth shape with proper mesh quality, and maintains the same mesh topology as the initial mesh. Application of the optimum design of an electromagnetic shielding plate shows the effectiveness of the presented method.

3D Shape Optimization of Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계민감도해석과 요소망 변형법을 이용한 전자소자의 3차원 형상최적화)

  • ;Yao Yingying
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.307-314
    • /
    • 2003
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D finite element method with edge element. The results of sensitivity analysis are used as the input data of the structural analysis to calculate the relocation of the nodal points. This method makes it possible that the new mesh of analysis region can be obtained from the initial mesh without regeneration. The proposed algorithm is applied to the shape optimization of 3D electromagnet pole to net a uniform flux density at the target region.

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

A Shape-preserved Method to Improve the Developability of Mesh

  • Su, Zhixun;Liu, Xiuping;Zhou, Xiaojie;Shen, Aihong
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.219-224
    • /
    • 2005
  • Developable surface plays an important role in computer aided design and manufacturing systems. This paper is concerned with improving the develop ability of mesh. Since subdivision is an efficient way to design complicated surface, we intend to improve the developability of the mesh obtained from Loop subdivision. The problem is formulated as a constrained optimization problem. The optimization is performed on the coordinates of the points of the mesh, together with the constraints of minimizing shape difference and maximizing developability, a developability improved mesh is obtained.

  • PDF

Numerical stability and parameters study of an improved bi-directional evolutionary structural optimization method

  • Huang, X.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • This paper presents a modified and improved bi-directional evolutionary structural optimization (BESO) method for topology optimization. A sensitivity filter which has been used in other optimization methods is introduced into BESO so that the design solutions become mesh-independent. To improve the convergence of the optimization process, the sensitivity number considers its historical information. Numerical examples show the effectiveness of the modified BESO method in obtaining convergent and mesh-independent solutions. A study of the effects of various BESO parameters on the solution is then conducted to determine the appropriate values for these parameters.

A study on the Algorithm for Mesh Network Topology Optimization and Routing (망토폴로지 최적화와 라우팅을 위한 알고리즘에 대한 연구)

  • Kim, Dong-Choon;Na, Seung-Kwon;Pyeon, Yong-Kug
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • We consider the problems that consist of designing time, establishment cost, delay time and reliability in designing a mesh network when given link costs and traffic requirements between nodes. Designing time, establishment cost and delay time are less, reliability is higher in designing a mesh network. One of the problems designing time is solved by mesh network topology optimization and routing (MENTOR) algorithm that Aaron Kershenbaum propose, but the others remain. In this paper we propose a new mesh network design algorithm with small computational complexity that the others are solved. The result of the proposed algorithm is better than MENTOR's in total establishment cost, delay time and reliability.

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.