• Title/Summary/Keyword: Mesh Surface

Search Result 800, Processing Time 0.027 seconds

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Three-Dimensional Finite Element Analysis for Hollow Section Extrusion of the Underframe of a Railroad Vehicle Using Mismatching Refinement with Domain Decomposition (영역분할에 의한 격자세분화기법을 사용한 철도차량 마루부재 압출공정의 3차원 유한요소해석)

  • Park, K.;Lee, Y.K.;Yang, D.Y.;Lee, D.H.
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.362-371
    • /
    • 2000
  • In order to reduce weight of a high-speed railroad vehicle, the main body has been manufactured by hollow section extrusion using aluminum alloys. A porthole die has utilized for the hollow section extrusion process, which causes complicated die geometry and flow characteristics. Design of porthole die is very difficult due to such a complexity. The three-dimensional finite element analysis for hollow section is also an arduous job from the viewpoint of appropriate mesh construction and tremendous computation time. In the present work, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented for the analysis of the hollow section extrusion process. In addition, a modified grid-based approach with the surface element layer is utilized lot three-dimensional mesh generation of a complicated shape with hexahedral elements. The effects of porthole design are discussed through the simulation for extrusion of an underframe part of a railroad vehicle. An experiment has also been carried out for the comparison. Comparing the velocity distribution at the outlet with the thickness variation of the extruded part, it is concluded that the analysis results can provide reliable measures whether the die design is acceptable to obtain uniform part thickness. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF

STL mesh based laser scan planning system for complex freeform surfaces (STL 메쉬를 이용한 자유곡면의 레이저 측정경로 생성 연구)

  • 손석배;김승만;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.595-598
    • /
    • 2002
  • Laser scanners are getting used more and more in reverse engineering and inspection. For CNC-driven laser scanners, it is important to automate the scanning operations to improve the accuracy of capture point data and to reduce scanning time in industry. However, there are few research works on laser scan planning system. In addition, it is difficult to directly analyze multi-patched freeform models. In this paper, we propose an STL (Stereolithography) mesh based laser scan planning system for complex freeform surfaces. The scan planning system consists of three steps and it is assumed that the CAD model of the part exists. Firstly, the surface model is approximated into STL meshes. From the mesh model, normal vector of each node point is estimated. Second, scan directions and regions are determined through the region growing method. Also, scan paths are generated by calculating the minimum-bounding rectangle of points that can be scanned in each scan direction. Finally, the generated scan directions and paths are validated by checking optical constraints and the collision between the laser probe and the part to be scanned.

  • PDF

Numerical Simulation of Rotor-Fuselage Aerodynamic Interaction Using an Unstructured Overset Mesh Technique

  • Lee, Bum-Seok;Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical simulation of unsteady flows around helicopters was conducted to investigate the aerodynamic interaction of main rotor and other components such as fuselage and tail rotor. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between the main rotor, and other components. As the application of the present method, calculations were made for the rotor-fuselage aerodynamic interaction of the ROBIN (ROtor Body INteraction) configuration and for a complete UH-60 helicopter configuration consisted of main rotor, fuselage, and tail rotor. Comparison of the computational results was made with measured time-averaged and instantaneous fuselage surface pressure distributions for the ROBIN configuration and thrust distribution and available experimental data for the UH-60 configuration. It is demonstrated that the present method is efficient and robust for the simulation of complete rotorcraft configurations.

A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading (폭발하중을 받는 콘크리트 보의 요소의존성 최소화 인장기준식)

  • Kwak, Hyo-Gyoung;Gang, HanGul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • A tensile failure criterion that can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept is introduced, and conventional plasticity based damage models for concrete such as CSC model and HJC model, which are generally used for the blast analyses of concrete structures, are compared with orthotropic model in blast test to verify the proposed criterion. The numerical prediction of the time-displacement relations in mid span of the beam during blast loading are compared with experimental results. Analytical results show that the numerical error is substantially reduced and the accuracy of numerical results is improved by applying a unique failure strain value determined according to the proposed criterion.

Design of Highly Skewed Propeller considering the Blade Strength (강도를 고려한 고스큐 프로펠러 날개의 형상 설계)

  • Song, In-Haeng;Nho, In-Sik;Lee, Tae-Goo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.411-416
    • /
    • 2008
  • A strength problem of propeller blades for large container ships at astern condition has been occasionally reported due to the application of a highly skewed propeller which can reduce the hull surface fluctuation forces. A finite element analysis code for propeller blade was developed and utilized since 1985. Recently, however, further fine mesh modeling for finite element analysis is required to yield higher accuracy in the analysis. The present study shows an application of FE analysis code to the highly skewed propeller for large container ships. Results of FE analysis show that the number of FE mesh affects largely on strength, and also the calculated strength with fine mesh gives good agreements to those of other FEM codes. A method to enlarge strength near the trailing edge was introduced considering the strength criterion on the blade.

Mesh Independent 3-D Modeling of Spot Welded Joints using Finite Elements with Embedded Strong Discontinuities (강한 불연속이 내장된 유한요소를 이용한 스폿 용접 접합의 망 독립적 삼차원 모델링)

  • Kim, Jongheon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.283-288
    • /
    • 2017
  • A spot welded joint is modeled using 3-D finite elements with embedded strong discontinuities. The spot weld is represented by a special cohesive law on the embedded discontinuity surface, instead of meshing its geometry. This strategy naturally eliminates the need of adaptive FEM meshes fitting the local geometry of the spot weld. Mesh independent solutions are guaranteed by explicitly modeling the detailed shape of the spot weld, which is in contrast with the exiting approach using point constraints for the spot weld.

Efficiency Improvement of Metal-Mesh Electrode Type Photoelectrochemical Cells by Oxides Layer Coatings (산화물박막 증착에 의한 금속 메쉬전극 구조 광전기화학셀의 효율 개선에 관한 연구)

  • Han, Chi-Hwan;Park, Seon-Hee;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.584-587
    • /
    • 2011
  • In this work, the $TiO_2$ and $SnO_2$ thin films as blocking layers were coated directly onto the metal-mesh electrode surface to prevent unnecessary inflow of back-transfer electrons from the electrolyte ($I^-/I_3^-$) to the metal-mesh electrode. The DSCs were fabricated with working electrode of SUS mesh coated with blocking $TiO_2$ and $SnO_2$ layers, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited F:$SnO_2$. From the experimental result, it was ascertained that the efficiency of metal electrode coated with $TiO_2$ by Dip-coating was superior to that of metal electrode coated with $SnO_2$ by Dip-coating and screen printing with the results of experiments. The photo-current conversion efficiency of the cell obtained from optimum fabrication condition was 3% ($V_{oc}$=0.61V, $J_{sc}$=11.64 mA/$cm^2$, ff=0.64) under AM1.5, 100 mW/$cm^2$ illumination.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme (1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석)

  • Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • This paper introduces a mesh continuation scheme for a one-dimensional inverse medium problem to reconstruct the spatial distribution of elastic wave velocities in heterogeneous semi-infinite solid domains. To formulate the inverse problem, perfectly-matched-layers(PMLs) are introduced as wave-absorbing boundaries that surround the finite computational domain truncated from the originally semi-infinite extent. To tackle the inverse problem in the PML-truncated domain, a partial-differential-equations(PDE)-constrained optimization approach is utilized, where a least-squares misfit between calculated and measured surface responses is minimized under the constraint of PML-endowed wave equations. The optimization problem iteratively solves for the unknown wave velocities with their updates calculated by Fletcher-Reeves conjugate gradient algorithms. The optimization is performed using a mesh continuation scheme through which the wave velocity profile is reconstructed in successively denser mesh conditions. Numerical results showed the robust performance of the mesh continuation scheme in reconstructing target wave velocity profile in a layered heterogeneous solid domain.